Tuesday Seminar on Topology

Seminar information archive ~03/03Next seminarFuture seminars 03/04~

Date, time & place Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.)
Organizer(s) KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya

2012/05/29

16:30-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Inasa Nakamura (Gakushuin University, JSPS)
Triple linking numbers and triple point numbers
of torus-covering $T^2$-links
(JAPANESE)
[ Abstract ]
The triple linking number of an oriented surface link was defined as an
analogical notion of the linking number of a classical link. A
torus-covering $T^2$-link $\\mathcal{S}_m(a,b)$ is a surface link in the
form of an unbranched covering over the standard torus, determined from
two commutative $m$-braids $a$ and $b$.
In this talk, we consider $\\mathcal{S}_m(a,b)$ when $a$, $b$ are pure
$m$-braids ($m \\geq 3$), which is a surface link with $m$-components. We
present the triple linking number of $\\mathcal{S}_m(a,b)$ by using the
linking numbers of the closures of $a$ and $b$. This gives a lower bound
of the triple point number. In some cases, we can determine the triple
point numbers, each of which is a multiple of four.