Tuesday Seminar on Topology

Seminar information archive ~06/09Next seminarFuture seminars 06/10~

Date, time & place Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.)
Organizer(s) KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya


16:30-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Yoshifumi Matsuda (The University of Tokyo)
Relatively quasiconvex subgroups of relatively hyperbolic groups (JAPANESE)
[ Abstract ]
Relative hyperbolicity of groups was introduced by Gromov as a
generalization of word hyperbolicity. Motivating examples of relatively
hyperbolic groups are fundamental groups of noncompact complete
hyperbolic manifolds of finite volume. The class of relatively
quasiconvex subgroups of a realtively hyperbolic group is defined as a
genaralization of that of quasicovex subgroups of a word hyperbolic
group. The notion of hyperbolically embedded subgroups of a relatively
hyperbolic group was introduced by Osin and such groups are
characterized as relatively quasiconvex subgroups with additional
algebraic properties. In this talk I will present an introduction to
relatively quasiconvex subgroups and discuss recent joint work with Shin
-ichi Oguni and Saeko Yamagata on hyperbolically embedded subgroups.