Tuesday Seminar on Topology
Seminar information archive ~05/02|Next seminar|Future seminars 05/03~
Date, time & place | Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | HABIRO Kazuo, KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya |
2011/10/04
16:30-18:00 Room #056 (Graduate School of Math. Sci. Bldg.)
Yoshifumi Matsuda (The University of Tokyo)
Relatively quasiconvex subgroups of relatively hyperbolic groups (JAPANESE)
Yoshifumi Matsuda (The University of Tokyo)
Relatively quasiconvex subgroups of relatively hyperbolic groups (JAPANESE)
[ Abstract ]
Relative hyperbolicity of groups was introduced by Gromov as a
generalization of word hyperbolicity. Motivating examples of relatively
hyperbolic groups are fundamental groups of noncompact complete
hyperbolic manifolds of finite volume. The class of relatively
quasiconvex subgroups of a realtively hyperbolic group is defined as a
genaralization of that of quasicovex subgroups of a word hyperbolic
group. The notion of hyperbolically embedded subgroups of a relatively
hyperbolic group was introduced by Osin and such groups are
characterized as relatively quasiconvex subgroups with additional
algebraic properties. In this talk I will present an introduction to
relatively quasiconvex subgroups and discuss recent joint work with Shin
-ichi Oguni and Saeko Yamagata on hyperbolically embedded subgroups.
Relative hyperbolicity of groups was introduced by Gromov as a
generalization of word hyperbolicity. Motivating examples of relatively
hyperbolic groups are fundamental groups of noncompact complete
hyperbolic manifolds of finite volume. The class of relatively
quasiconvex subgroups of a realtively hyperbolic group is defined as a
genaralization of that of quasicovex subgroups of a word hyperbolic
group. The notion of hyperbolically embedded subgroups of a relatively
hyperbolic group was introduced by Osin and such groups are
characterized as relatively quasiconvex subgroups with additional
algebraic properties. In this talk I will present an introduction to
relatively quasiconvex subgroups and discuss recent joint work with Shin
-ichi Oguni and Saeko Yamagata on hyperbolically embedded subgroups.