Algebraic Geometry Seminar
Seminar information archive ~09/11|Next seminar|Future seminars 09/12~
Date, time & place | Friday 13:30 - 15:00 ハイブリッド開催/117Room #ハイブリッド開催/117 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | GONGYO Yoshinori, NAKAMURA Yusuke, TANAKA Hiromu |
2011/04/25
16:30-18:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Hiromichi Takagi (University of Tokyo)
Mirror symmetry and projective geometry of Reye congruences (JAPANESE)
Hiromichi Takagi (University of Tokyo)
Mirror symmetry and projective geometry of Reye congruences (JAPANESE)
[ Abstract ]
This is a joint work with Shinobu Hosono.
It is well-known that the projective dual of the second Veronese variety v_2(P^n) is the symmetric determinantal hypersurface H. However, in the context of homological projective duality after Kuznetsov, it is natural to consider that the Chow^2 P^n and H are dual (note that Chow^2 P^n is the secant variety of v_2(P^n)).
Though we did not yet formulate what this duality exactly means in full generality, we show some results in this context for the values n¥leq 4.
For example, let n=4. We consider Chow^2 P^4 in P(S^2 V) and H in P(S^2 V^*), where V is the vector space such that P^4 =P(V). Take a general 4-plane P in
P(S^2 V^*) and let P' be the orthogonal space to P in P(S^2 V). Then X:=Chow^2 P^4 ¥cap P' is a smooth Calabi-Yau 3-fold, and there exists a natural double cover Y -> H¥cap P with a smooth Calabi-Yau 3-fold Y. It is easy to check
that X and Y are not birational each other.
Our main result asserts the derived equivalence of X and Y. This derived equivalence is given by the Fourier Mukai functor D(X)-> D(Y) whose kernel is the ideal sheaf in X×Y of a flat family of curves on Y parameterized by X.
Curves on Y in this family have degree 5 and arithmetic genus 3, and these have a nice interpretation by a BPS number of Y. The proof of the derived equivalence is slightly involved so I explain a similar result in the case where n=3. In this case, we obtain a fully faithful functor from D(X)-> D(Y), where X is a so called the Reye congruence Enriques surface and Y is the 'big resolution' of the Artin-Mumford quartic double solid.
This is a joint work with Shinobu Hosono.
It is well-known that the projective dual of the second Veronese variety v_2(P^n) is the symmetric determinantal hypersurface H. However, in the context of homological projective duality after Kuznetsov, it is natural to consider that the Chow^2 P^n and H are dual (note that Chow^2 P^n is the secant variety of v_2(P^n)).
Though we did not yet formulate what this duality exactly means in full generality, we show some results in this context for the values n¥leq 4.
For example, let n=4. We consider Chow^2 P^4 in P(S^2 V) and H in P(S^2 V^*), where V is the vector space such that P^4 =P(V). Take a general 4-plane P in
P(S^2 V^*) and let P' be the orthogonal space to P in P(S^2 V). Then X:=Chow^2 P^4 ¥cap P' is a smooth Calabi-Yau 3-fold, and there exists a natural double cover Y -> H¥cap P with a smooth Calabi-Yau 3-fold Y. It is easy to check
that X and Y are not birational each other.
Our main result asserts the derived equivalence of X and Y. This derived equivalence is given by the Fourier Mukai functor D(X)-> D(Y) whose kernel is the ideal sheaf in X×Y of a flat family of curves on Y parameterized by X.
Curves on Y in this family have degree 5 and arithmetic genus 3, and these have a nice interpretation by a BPS number of Y. The proof of the derived equivalence is slightly involved so I explain a similar result in the case where n=3. In this case, we obtain a fully faithful functor from D(X)-> D(Y), where X is a so called the Reye congruence Enriques surface and Y is the 'big resolution' of the Artin-Mumford quartic double solid.