Applied Analysis

Seminar information archive ~10/09Next seminarFuture seminars 10/10~

Date, time & place Thursday 16:00 - 17:30 002Room #002 (Graduate School of Math. Sci. Bldg.)

2011/01/27

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
Nitsan Ben-Gal (The Weizmann Institute of Science)
Attraction at infinity: Constructing non-compact global attractors in the slowly non-dissipative realm (ENGLISH)
[ Abstract ]
One of the primary tools for understanding the much-studied realm of reaction-diffusion equations is the global attractor, which provides us with a qualitative understanding of the governing behaviors of solutions to the equation in question. Nevertheless, the classic global attractor for such systems is defined to be compact, and thus attractor theory has previously excluded such analysis from being applied to non-dissipative reaction-diffusion equations.
In this talk I will present recent results in which I developed a non-compact analogue to the classical global attractor, and will discuss the methods derived in order to obtain a full decomposition of the non-compact global attractor for a slowly non-dissipative reaction-diffusion equation. In particular, attention will be paid to the nodal property techniques and reduction methods which form a critical underpinning of asymptotics research in both dissipative and non-dissipative evolutionary equations. I will discuss the concepts of the ‘completed inertial manifold’ and ‘non-compact global attractor’, and show how these in particular allow us to produce equivalent results for a class of slowly non-dissipative equations as have been achieved for dissipative equations. Additionally, I will address the behavior of solutions to slowly non-dissipative equations approaching and at infinity, the realm which presents both the challenges and rewards of removing the necessity of dissipativity.