Algebraic Geometry Seminar

Seminar information archive ~04/12Next seminarFuture seminars 04/13~

Date, time & place Friday 13:30 - 15:00 ハイブリッド開催/117Room #ハイブリッド開催/117 (Graduate School of Math. Sci. Bldg.)
Organizer(s) GONGYO Yoshinori, NAKAMURA Yusuke, TANAKA Hiromu


16:40-18:10   Room #126 (Graduate School of Math. Sci. Bldg.)
Sergey Fomin (University of Michigan)
Enumeration of plane curves and labeled floor diagrams (ENGLISH)
[ Abstract ]
Floor diagrams are a class of weighted oriented graphs introduced by E. Brugalle and G. Mikhalkin. Tropical geometry arguments yield combinatorial descriptions of (ordinary and relative) Gromov-Witten invariants of projective spaces in terms of floor diagrams and their generalizations. In the case of the projective plane, these descriptions can be used to obtain new formulas for the corresponding enumerative invariants. In particular, we give a proof of Goettsche's polynomiality conjecture for plane curves, and enumerate plane rational curves of given degree passing through given points and having maximal tangency to a given line. On the combinatorial side, we show that labeled floor diagrams of genus 0 are equinumerous to labeled trees, and therefore counted by the celebrated Cayley's formula. The corresponding bijections lead to interpretations of the Kontsevich numbers (the genus-0 Gromov-Witten invariants of the projective plane) in terms of certain statistics on trees.

This is joint work with Grisha Mikhalkin.