PDE Real Analysis Seminar
Seminar information archive ~04/30|Next seminar|Future seminars 05/01~
Date, time & place | Tuesday 10:30 - 11:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | Yoshikazu Giga, Kazuhiro Ishige, Hiroyoshi Mitake, Tsuyoshi Yoneda |
URL | https://www.math.sci.hokudai.ac.jp/coe/sympo/pde_ra/index_en.html |
2009/12/02
10:30-11:30 Room #056 (Graduate School of Math. Sci. Bldg.)
Juergen Saal (University of Konstanz)
A hyperbolic fluid model based on Cattaneo's law
Juergen Saal (University of Konstanz)
A hyperbolic fluid model based on Cattaneo's law
[ Abstract ]
In various applications a delay of the propagation speed of a fluid (temperature, ...) has been observed. Such phenomena cannot be described by standard parabolic models, whose derivation relies on Fourier's law (Paradoxon of infinite propagation speed).
One way to give account to these observations and which was successfully applied to several models, is to replace Fourier's law by the law of Cattaneo. In the case of a fluid, this leads to a hyperbolicly perturbed quasilinear Navier-Stokes system for which existence and uniqueness results will be presented.
In various applications a delay of the propagation speed of a fluid (temperature, ...) has been observed. Such phenomena cannot be described by standard parabolic models, whose derivation relies on Fourier's law (Paradoxon of infinite propagation speed).
One way to give account to these observations and which was successfully applied to several models, is to replace Fourier's law by the law of Cattaneo. In the case of a fluid, this leads to a hyperbolicly perturbed quasilinear Navier-Stokes system for which existence and uniqueness results will be presented.