Tuesday Seminar on Topology
Seminar information archive ~01/15|Next seminar|Future seminars 01/16~
Date, time & place | Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya |
2009/06/16
16:30-18:00 Room #056 (Graduate School of Math. Sci. Bldg.)
佐藤 正寿 (東京大学大学院数理科学研究科)
The abelianization of the level 2 mapping class group
佐藤 正寿 (東京大学大学院数理科学研究科)
The abelianization of the level 2 mapping class group
[ Abstract ]
The level d mapping class group is a finite index subgroup of the mapping class group of an orientable closed surface. For d greater than or equal to 3, the abelianization of this group is equal to the first homology group of the moduli space of nonsingular curves with level d structure.
In this talk, we determine the abelianization of the level d mapping class group for d=2 and odd d. For even d greater than 2, we also determine it up to a cyclic group of order 2.
The level d mapping class group is a finite index subgroup of the mapping class group of an orientable closed surface. For d greater than or equal to 3, the abelianization of this group is equal to the first homology group of the moduli space of nonsingular curves with level d structure.
In this talk, we determine the abelianization of the level d mapping class group for d=2 and odd d. For even d greater than 2, we also determine it up to a cyclic group of order 2.