## GCOE lecture series

Seminar information archive ～09/11｜Next seminar｜Future seminars 09/12～

### 2009/03/12

09:30-14:30 Room #123 (Graduate School of Math. Sci. Bldg.)

Dirac Cohomology

https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html

Harish-Chandra modules

Special unipotent representations of real reductive groups

**Roger Zierau**(Oklahoma State University) 09:30-10:30Dirac Cohomology

[ Abstract ]

Dirac operators have played an important role in representation theory. An early example is the construction of discrete series representations as spaces of L2 harmonic spinors on symmetric spaces G/K. More recently a very natural Dirac operator has been discovered by Kostant; it is referred to as the cubic Dirac operator. There are algebraic and geometric versions. Suppose G/H is a reductive homogeneous space and $\\mathfrak g = \\mathfrak h + \\mathfrak q$. Let S\\mathfrak q be the restriction of the spin representation of SO(\\mathfrak q) to H ⊂ SO(\\mathfrak q). The algebraic cubic Dirac operator is an H-homomorphism \\mathcal D: V \\otimes S\\mathfrak q → V \\otimes S\\mathfrak q, where V is an $\\mathfrak g$-module. The geometric geometric version is a differential operator acting on smooth sections of vector bundles of spinors on G/H. The algebraic cubic Dirac operator leads to a notion of Dirac cohomology, generalizing $\\mathfrak n$-cohomology. The lectures will roughly contain the following.

1.Construction of the spin representations of \\widetilde{SO}(n).

2.The algebraic cubic Dirac operator \\mathcal D: V \\otimes S\\mathfrak q → V \\otimes S\\mathfrak q will be defined and some properties, including a formula for the square, will be given.

3. Of special interest is the case when H=K, a maximal compact subgroup of G and V is a unitarizable $(\\mathfrak g,K)$-module. This case will be discussed.

4.The Dirac cohomology of a finite dimensional representation will be computed. We will see how this is related to $\\mathfrak n$-cohomology of V.

5. The relationship between the algebraic and geometric cubic Dirac operators will be described. A couple of open questions will then be discussed.

The lectures will be fairly elementary.

[ Reference URL ]Dirac operators have played an important role in representation theory. An early example is the construction of discrete series representations as spaces of L2 harmonic spinors on symmetric spaces G/K. More recently a very natural Dirac operator has been discovered by Kostant; it is referred to as the cubic Dirac operator. There are algebraic and geometric versions. Suppose G/H is a reductive homogeneous space and $\\mathfrak g = \\mathfrak h + \\mathfrak q$. Let S\\mathfrak q be the restriction of the spin representation of SO(\\mathfrak q) to H ⊂ SO(\\mathfrak q). The algebraic cubic Dirac operator is an H-homomorphism \\mathcal D: V \\otimes S\\mathfrak q → V \\otimes S\\mathfrak q, where V is an $\\mathfrak g$-module. The geometric geometric version is a differential operator acting on smooth sections of vector bundles of spinors on G/H. The algebraic cubic Dirac operator leads to a notion of Dirac cohomology, generalizing $\\mathfrak n$-cohomology. The lectures will roughly contain the following.

1.Construction of the spin representations of \\widetilde{SO}(n).

2.The algebraic cubic Dirac operator \\mathcal D: V \\otimes S\\mathfrak q → V \\otimes S\\mathfrak q will be defined and some properties, including a formula for the square, will be given.

3. Of special interest is the case when H=K, a maximal compact subgroup of G and V is a unitarizable $(\\mathfrak g,K)$-module. This case will be discussed.

4.The Dirac cohomology of a finite dimensional representation will be computed. We will see how this is related to $\\mathfrak n$-cohomology of V.

5. The relationship between the algebraic and geometric cubic Dirac operators will be described. A couple of open questions will then be discussed.

The lectures will be fairly elementary.

https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html

**Bernhard Krötz**(Max Planck) 11:00-12:00Harish-Chandra modules

[ Abstract ]

We plan to give a course on the various types of topological globalizations of Harish-Chandra modules. It is intended to cover the following topics:

1.Topological representation theory on various types of locally convex vector spaces.

2.Basic algebraic theory of Harish-Chandra modules

3. Unique globalization versus lower bounds for matrix coefficients

4. Dirac type sequences for representations

5. Deformation theory of Harish-Chandra modules

The new material presented was obtained in collaboration with Joseph Bernstein and Henrik Schlichtkrull. A first reference is the recent preprint "Smooth Frechet Globalizations of Harish-Chandra Modules" by J. Bernstein and myself, downloadable at arXiv:0812.1684v1.

We plan to give a course on the various types of topological globalizations of Harish-Chandra modules. It is intended to cover the following topics:

1.Topological representation theory on various types of locally convex vector spaces.

2.Basic algebraic theory of Harish-Chandra modules

3. Unique globalization versus lower bounds for matrix coefficients

4. Dirac type sequences for representations

5. Deformation theory of Harish-Chandra modules

The new material presented was obtained in collaboration with Joseph Bernstein and Henrik Schlichtkrull. A first reference is the recent preprint "Smooth Frechet Globalizations of Harish-Chandra Modules" by J. Bernstein and myself, downloadable at arXiv:0812.1684v1.

**Peter Trapa**(Utah大学) 13:30-14:30Special unipotent representations of real reductive groups

[ Abstract ]

These lectures are aimed at beginning graduate students interested in the representation theory of real Lie groups. A familiarity with the theory of compact Lie groups and the basics of Harish-Chandra modules will be assumed. The goal of the lecture series is to give an exposition (with many examples) of the algebraic and geometric theory of special unipotent representations. These representations are of considerable interest; in particular, they are predicted to be the building blocks of all representation which can contribute to spaces of automorphic forms. They admit many beautiful characterizations, but their construction and unitarizability still remain mysterious.

The following topics are planned:

1.Algebraic definition of special unipotent representations and examples.

2.Localization and duality for Harish-Chandra modules.

3. Geometric definition of special unipotent representations.

These lectures are aimed at beginning graduate students interested in the representation theory of real Lie groups. A familiarity with the theory of compact Lie groups and the basics of Harish-Chandra modules will be assumed. The goal of the lecture series is to give an exposition (with many examples) of the algebraic and geometric theory of special unipotent representations. These representations are of considerable interest; in particular, they are predicted to be the building blocks of all representation which can contribute to spaces of automorphic forms. They admit many beautiful characterizations, but their construction and unitarizability still remain mysterious.

The following topics are planned:

1.Algebraic definition of special unipotent representations and examples.

2.Localization and duality for Harish-Chandra modules.

3. Geometric definition of special unipotent representations.