Colloquium
Seminar information archive ~09/12|Next seminar|Future seminars 09/13~
Organizer(s) | ASUKE Taro, TERADA Itaru, HASEGAWA Ryu, MIYAMOTO Yasuhito (chair) |
---|---|
URL | https://www.ms.u-tokyo.ac.jp/seminar/colloquium_e/index_e.html |
2008/11/21
16:30-17:30 Room #002 (Graduate School of Math. Sci. Bldg.)
平地健吾 (東京大学大学院数理科学研究科)
What is Q-curvature?
次回開催日は11月28日(金)(講演者:川又雄二郎 氏)です。ご注意下さい。
平地健吾 (東京大学大学院数理科学研究科)
What is Q-curvature?
[ Abstract ]
共形幾何は次元の偶奇におうじて著しく異なった性質をもちます。その多くは n次元球面の共形自己同型群SO(n+1,1)が奇数次元ならB型,偶数次元ならD型になるといことから説明できます。この講演では偶数次元にのみ現れるQ-曲率とよばれる局所不変量とその周辺に現れる共形不変量および不変作用素の理論を紹介します。Q-曲率はAdS/CFT対応にも自然に現れることもあり,最近の共形幾何の主要テーマになっていますが,その定義は簡単ではありません。Q-曲率の(短い)歴史と表現論の結果をふまえて,なっとくのできる定義を与えることを目指します。
[ Reference URL ]共形幾何は次元の偶奇におうじて著しく異なった性質をもちます。その多くは n次元球面の共形自己同型群SO(n+1,1)が奇数次元ならB型,偶数次元ならD型になるといことから説明できます。この講演では偶数次元にのみ現れるQ-曲率とよばれる局所不変量とその周辺に現れる共形不変量および不変作用素の理論を紹介します。Q-曲率はAdS/CFT対応にも自然に現れることもあり,最近の共形幾何の主要テーマになっていますが,その定義は簡単ではありません。Q-曲率の(短い)歴史と表現論の結果をふまえて,なっとくのできる定義を与えることを目指します。
次回開催日は11月28日(金)(講演者:川又雄二郎 氏)です。ご注意下さい。