Algebraic Geometry Seminar
Seminar information archive ~09/12|Next seminar|Future seminars 09/13~
Date, time & place | Friday 13:30 - 15:00 ハイブリッド開催/117Room #ハイブリッド開催/117 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | GONGYO Yoshinori, NAKAMURA Yusuke, TANAKA Hiromu |
2008/11/07
16:30-18:00 Room #118 (Graduate School of Math. Sci. Bldg.)
Misha Verbitsky (ITEP and IPMU)
Hyperkaehler SYZ conjecture and stability
Misha Verbitsky (ITEP and IPMU)
Hyperkaehler SYZ conjecture and stability
[ Abstract ]
Let L be a nef bundle on a hyperkaehler manifold. A Hyperkaehler SYZ conjecture postulates that L is semi-ample. As shown by Matsushita, this implies existence of holomorphic Lagrangian fibrations on hyperkaehler manifolds. It was conjectured by many
people, most recently by Tschinkel, Hassett, Huybrechts and Sawon. We prove that a sufficiently big power of L is effective, assuming that L admits a semi-positive metric. A multiplier ideal version of this argument would give effectivity of L^N for any nef L. The proof uses stability and Boucksom's divisorial
Zariski decomposition.
Let L be a nef bundle on a hyperkaehler manifold. A Hyperkaehler SYZ conjecture postulates that L is semi-ample. As shown by Matsushita, this implies existence of holomorphic Lagrangian fibrations on hyperkaehler manifolds. It was conjectured by many
people, most recently by Tschinkel, Hassett, Huybrechts and Sawon. We prove that a sufficiently big power of L is effective, assuming that L admits a semi-positive metric. A multiplier ideal version of this argument would give effectivity of L^N for any nef L. The proof uses stability and Boucksom's divisorial
Zariski decomposition.