Tuesday Seminar on Topology

Seminar information archive ~11/29Next seminarFuture seminars 11/30~

Date, time & place Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.)
Organizer(s) KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya


16:30-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
長郷 文和 (東京工業大学大学院理工学研究科)
A certain slice of the character variety of a knot group
and the knot contact homology

[ Abstract ]
For a knot $K$ in 3-sphere, we can consider representations of
the knot group $G_K$ into $SL(2,\\mathbb{C})$.
Their characters construct an algebraic set.
This is so-called the $SL(2,\\mathbb{C})$-character variety of
$G_K$ and denoted by $X(G_K)$.

In this talk, we introduce a slice (a subset) $S_0(K)$ of $X(G_K)$.
In fact, this slice is closely related to the A-polynomial
and the abelian knot contact homology.
For example, the A-polynomial $A_K(m,l)$ of a knot $K$ is
a two-variable polynomial knot invariant defined by using
the character variety $X(G_K)$.
Then we can show that for any {\\it small knot} $K$, the number of
irreducible components of $S_0(K)$ gives an upper bound of
the maximal degree of the A-polynomial $A_K(m,l)$ in terms of
the variable $l$.
Moreover, for any 2-bridge knot $K$, we can show that
the coordinate ring of $S_0(K)$ is exactly the degree 0
abelian knot contact homology $HC_0^{ab}(K)$.

We will mainly explain these facts.