Algebraic Geometry Seminar

Seminar information archive ~06/09Next seminarFuture seminars 06/10~

Date, time & place Friday 13:30 - 15:00 ハイブリッド開催/117Room #ハイブリッド開催/117 (Graduate School of Math. Sci. Bldg.)
Organizer(s) GONGYO Yoshinori, NAKAMURA Yusuke, TANAKA Hiromu


10:00-12:00   Room #128 (Graduate School of Math. Sci. Bldg.)
Dmitry KALEDIN (Steklov研究所, 東大数理)
Homogical methods in Non-commutative Geometry
[ Abstract ]
Of all the approaches to non-commutative geometry, probably the most promising is the homological one, developed by Keller, Kontsevich, Toen and others, where non-commutative eometry is understood as "geometry of triangulated categories". Examples of "geometric" triangulated categories come from representation theory, symplectic geometry (Fukaya category) and algebraic geometry (the derived category of coherent sheaves on an algebraic variety and
various generalizations). Non-commutative point of view is expected to be helpful even in traditional questions of algebraic geometry such as the termination of flips.

We plan to give an introduction to the subject, with emphasis on homological methods (such as e.g. Hodge theory which, as it turns out, can be mostly formulated in the non-commutative setting).

No knowledge of non-commutative geometry whatsoever is assumed. However, familiarity with basic homological algebra and algebraic geometry will be helpful.