Tuesday Seminar on Topology
Seminar information archive ~09/12|Next seminar|Future seminars 09/13~
Date, time & place | Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya |
2006/11/28
17:00-18:00 Room #056 (Graduate School of Math. Sci. Bldg.)
芥川 和雄 (東京理科大学理工学部)
The Yamabe constants of infinite coverings and a positive mass theorem
芥川 和雄 (東京理科大学理工学部)
The Yamabe constants of infinite coverings and a positive mass theorem
[ Abstract ]
The {\\it Yamabe constant} $Y(M, C)$ of a given closed conformal manifold
$(M, C)$ is defined by the infimum of
the normalized total-scalar-curavarure functional $E$
among all metrics in $C$.
The study of the second variation of this functional $E$ led O.Kobayashi and Schoen
to independently introduce a natural differential-topological invariant $Y(M)$,
which is obtained by taking the supremum of $Y(M, C)$ over the space of all conformal classes.
This invariant $Y(M)$ is called the {\\it Yamabe invariant} of $M$.
For the study of the Yamabe invariant,
the relationship between $Y(M, C)$ and those of its conformal coverings
is important, the case when $Y(M, C)> 0$ particularly.
When $Y(M, C) \\leq 0$, by the uniqueness of unit-volume constant scalar curvature metrics in $C$,
the desired relation is clear.
When $Y(M, C) > 0$, such a uniqueness does not hold.
However, Aubin proved that $Y(M, C)$ is strictly less than
the Yamabe constant of any of its non-trivial {\\it finite} conformal coverings,
called {\\it Aubin's Lemma}.
In this talk, we generalize this lemma to the one for the Yamabe constant of
any $(M_{\\infty}, C_{\\infty})$ of its {\\it infinite} conformal coverings,
under a certain topological condition on the relation between $\\pi_1(M)$ and $\\pi_1(M_{\\infty})$.
For the proof of this, we aslo establish a version of positive mass theorem
for a specific class of asymptotically flat manifolds with singularities.
The {\\it Yamabe constant} $Y(M, C)$ of a given closed conformal manifold
$(M, C)$ is defined by the infimum of
the normalized total-scalar-curavarure functional $E$
among all metrics in $C$.
The study of the second variation of this functional $E$ led O.Kobayashi and Schoen
to independently introduce a natural differential-topological invariant $Y(M)$,
which is obtained by taking the supremum of $Y(M, C)$ over the space of all conformal classes.
This invariant $Y(M)$ is called the {\\it Yamabe invariant} of $M$.
For the study of the Yamabe invariant,
the relationship between $Y(M, C)$ and those of its conformal coverings
is important, the case when $Y(M, C)> 0$ particularly.
When $Y(M, C) \\leq 0$, by the uniqueness of unit-volume constant scalar curvature metrics in $C$,
the desired relation is clear.
When $Y(M, C) > 0$, such a uniqueness does not hold.
However, Aubin proved that $Y(M, C)$ is strictly less than
the Yamabe constant of any of its non-trivial {\\it finite} conformal coverings,
called {\\it Aubin's Lemma}.
In this talk, we generalize this lemma to the one for the Yamabe constant of
any $(M_{\\infty}, C_{\\infty})$ of its {\\it infinite} conformal coverings,
under a certain topological condition on the relation between $\\pi_1(M)$ and $\\pi_1(M_{\\infty})$.
For the proof of this, we aslo establish a version of positive mass theorem
for a specific class of asymptotically flat manifolds with singularities.