Tuesday Seminar on Topology
Seminar information archive ~09/10|Next seminar|Future seminars 09/11~
Date, time & place | Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya |
2006/06/27
16:30-18:00 Room #056 (Graduate School of Math. Sci. Bldg.)
Cedric Tarquini (Ecole Nomale Superieure of Lyon)
Lorentzian foliations on 3-manifolds
Cedric Tarquini (Ecole Nomale Superieure of Lyon)
Lorentzian foliations on 3-manifolds
[ Abstract ]
a joint work with C. Boubel (Ecole Nomale Superieure of Lyon) and P. Mounoud (University of Bordeaux 1 sciences and technologies)
The aim of this work is to give a classification of transversely Lorentzian one dimensional foliations on compact manifolds of dimension three. There are the foliations which admit a transverse pseudo-Riemanniann metric of index one. It is the Lorentzian analogue of the better known Riemannian foliations and they still have rigid transverse geometry.
The Riemannian case was listed by Y. Carriere and we will see that the Lorentzian one is very different and much more complicated to classify. The difference comes form the fact that the completness of the transverse structure, which is automatic in the Riemannian case, is a very strong hypothesis for a transverse Lorentzian foliation.
We will give a classification of complete Lorentzian foliations and some examples which are not complete. As a natural corollary of this classification we will list the codimension one timelike geodesically complete totally geodesic foliations of Lorentzian compact three manifolds.
a joint work with C. Boubel (Ecole Nomale Superieure of Lyon) and P. Mounoud (University of Bordeaux 1 sciences and technologies)
The aim of this work is to give a classification of transversely Lorentzian one dimensional foliations on compact manifolds of dimension three. There are the foliations which admit a transverse pseudo-Riemanniann metric of index one. It is the Lorentzian analogue of the better known Riemannian foliations and they still have rigid transverse geometry.
The Riemannian case was listed by Y. Carriere and we will see that the Lorentzian one is very different and much more complicated to classify. The difference comes form the fact that the completness of the transverse structure, which is automatic in the Riemannian case, is a very strong hypothesis for a transverse Lorentzian foliation.
We will give a classification of complete Lorentzian foliations and some examples which are not complete. As a natural corollary of this classification we will list the codimension one timelike geodesically complete totally geodesic foliations of Lorentzian compact three manifolds.