Seminar on Geometric Complex Analysis
Seminar information archive ~12/07|Next seminar|Future seminars 12/08~
Date, time & place | Monday 10:30 - 12:00 128Room #128 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | Kengo Hirachi, Shigeharu Takayama |
2005/11/21
10:30-12:00 Room #128 (Graduate School of Math. Sci. Bldg.)
Andreas Cap (Univ. of Vienna)
On CR-invariant differential operators
Andreas Cap (Univ. of Vienna)
On CR-invariant differential operators
[ Abstract ]
My talk will be devoted to questions about differential operators which are intrinsic to non--degenerate CR structures of hypersurface type. Restricting to the subclass of spherical CR structures, this question admits an equivalent formulation in terms of representation theory, which leads to several surprising consequences.
Guided by the ideas from representation theory and using the canonical Cartan connection which is available in this situation, one obtains a construction for a large class of such operators, which continues to work for non--spherical structures, and even for a class of almost CR structures. In the end of the talk I will discuss joint work with V. Soucek which shows that in the integrable case many of the operators obtained in this way form complexes.
My talk will be devoted to questions about differential operators which are intrinsic to non--degenerate CR structures of hypersurface type. Restricting to the subclass of spherical CR structures, this question admits an equivalent formulation in terms of representation theory, which leads to several surprising consequences.
Guided by the ideas from representation theory and using the canonical Cartan connection which is available in this situation, one obtains a construction for a large class of such operators, which continues to work for non--spherical structures, and even for a class of almost CR structures. In the end of the talk I will discuss joint work with V. Soucek which shows that in the integrable case many of the operators obtained in this way form complexes.