Seminar on Geometric Complex Analysis
Seminar information archive ~05/02|Next seminar|Future seminars 05/03~
Date, time & place | Monday 10:30 - 12:00 128Room #128 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | Kengo Hirachi, Shigeharu Takayama |
2005/01/17
10:30-12:00 Room #128 (Graduate School of Math. Sci. Bldg.)
中川健治 (長岡技術科学大学)
複素函数論の情報ネットワーク特性評価への応用
中川健治 (長岡技術科学大学)
複素函数論の情報ネットワーク特性評価への応用
[ Abstract ]
情報ネットワークの特性評価を目的として,離散型 および連続型確率変数 X の裾確率 P(X > x) の指数的 減少について調べる。特に X が連続型の場合,X の確率 分布関数 F(x) = P(X ≧ x)のLaplace-Stieltjes変換を φ(s) とし,φ(s) の収束座標を σ とする。 -∞ < σ < 0 を仮定する。φ(s) の収束軸上の 特異点が高々有限個の極のみならば P(X > x) が指数的に 減少することを示す。その解析のために Ikehara による Tauber 型定理を拡張して適用する。
情報ネットワークの特性評価を目的として,離散型 および連続型確率変数 X の裾確率 P(X > x) の指数的 減少について調べる。特に X が連続型の場合,X の確率 分布関数 F(x) = P(X ≧ x)のLaplace-Stieltjes変換を φ(s) とし,φ(s) の収束座標を σ とする。 -∞ < σ < 0 を仮定する。φ(s) の収束軸上の 特異点が高々有限個の極のみならば P(X > x) が指数的に 減少することを示す。その解析のために Ikehara による Tauber 型定理を拡張して適用する。