[P] |
T. Kobayashi and B. Speh, How does the restriction of representations
change under translations?: A story for the general linear groups and the
unitary groups, preprint. 39 pages.
arXiv: 2502.08479. [ full info ] |
[P] |
T. Kobayashi, Harish-Chandra's admissibility theorem and beyond,
preprint. 32 pages. [ full info ] |
[P] |
T. Kobayashi and M. Pevzner, A generating operator for Rankin-Cohen
brackets, preprint. 24 pp. To appear in Journal of Functional Analysis. arXiv:
2306.16800. [ full info ] |
[354] |
F. Kassel and T. Kobayashi, Spectral analysis on standard locally
homogeneous spaces, Lecture Notes in Mathematics, vol. 2367, 2025, (FJ-LMI
subseries 1). xi+116 pages.
doi:
10.1007/978-981-96-1957-3 arXiv:
1912.12601. Softcover: ISBN 978-981-96-1959-7 (01 May 2025); eBook: ISBN
978-981-96-1957-3 (Published: 30 March 2025). [ full info ] |
[352] |
T. Kobayashi and M. Pevzner, A short proof for Rankin-Cohen brackets
and generating operators, Lie Theory and Its Applications in Physics. LT
2023 (V. Dobrev, ed.), Springer Proceedings in Mathematics & Statistics,
vol. 473, Springer, 2025, pp. 3-15,
doi:
10.1007/978-981-97-6453-2_1. Available also at
arXiv: 2402.05363. [ full info ] |
[348] |
T. Kobayashi and M. Pevzner, Generating operators and normal
derivatives, Expansion in Representation Theory and Harmonic Analysis
(Y. Tanaka, ed.), RIMS Kôkyûroku, no.
2297,
2024, pp. 1-15. [ full info ] |
[342] |
T. Kobayashi, Recent advances in branching problems of representations,
Sugaku Expositions 37 (2024), 129-177,
DOI: 10.1090/suga/485. Published
electronically: October 23, 2024. Amer. Math. Soc.; a translation by
Toshihisa Kubo of the Japanese original article.
arXiv: 2112.00642. [ full info ] |
[336] |
T. Kobayashi, Generating operators of symmetry breaking-from
discrete to continuous, Indagationes Mathematicae 36 (2024), no. 2,
631-643, Published online 15 March 2024.
DOI:
10.1016/j.indag.2024.03.007. arXiv:
2307.16587. [ full info ] |
[331] |
T. Kobayashi, Bounded multiplicity branching for symmetric pairs,
Journal of Lie Theory 33 (2023), no. 1, 305-328, Special Volume for
Karl Heinrich Hofmann. Available also at
arXiv: 2210.13146.
[ full info ] |
[328] |
T. Kobayashi, Multiplicity in restricting minimal representations, Lie
Theory and Its Applications in Physics. LT 2021 (V. Dobrev, ed.), Springer
Proceedings in Mathematics & Statistics, vol. 396, Springer-Nature,
pp. 3-20, DOI:
10.1007/978-981-19-4751-3_1. Available also at
arXiv: 2204.05079. [ full info ] |
[327] |
Y. Benoist, Y. Inoue, and T. Kobayashi, Temperedness criterion of the
tensor product of parabolic induction for GLn, Journal of Algebra
617 (2023), 1-16,
DOI:
10.1016/j.jalgebra.2022.10.029.
arXiv: 2108.12125. [ full info ] |
[325] |
T. Kobayashi, Multiplicity in restricting small representations,
Proceedings of Japan Academy, Ser. A 98 (2022), 19-24,
DOI: 10.3792/pjaa.98.00. [ full info ] |
[323] |
T. Kobayashi, Bounded multiplicity theorems for induction and
restriction, Journal of Lie Theory 32 (2022), 197-238.
arXiv: 2109.14424. [ full info ] |
[322] |
T. Kobayashi, Branching laws of unitary representations associated to minimal elliptic orbits for indefinite orthogonal group O(p,q), Advances
in Mathematics 388 (2021), 107862. 38 pages,
DOI:
10.1016/j.aim.2021.107862. arXiv:
1907.07994. [ full info ] |
[320] |
T. Kobayashi and B. Speh, Distinguished representations of SO(n+1,1)
×SO(n,1), periods and branching laws, Relative Trace Formulas
(W. Müller, S. W. Shin, and N. Templier, eds.), Simons Symposia,
Springer, 2021, pp. 291-319,
DOI:
10.1007/978-3-030-68506-5_8. arXiv:
1907.05890. [ full info ] |
[318] |
T. Kobayashi and M. Pevzner, Inversion of Rankin-Cohen operators via
holographic transform, Ann. Inst. Fourier (Grenoble) 70 (2020),
no. 5, 2131-2190, arXiv: 1812.09733. [ full info ] |
[317] |
T. Kobayashi and B. Speh, A hidden symmetry of a branching law, Lie
Theory and Its Applications in Physics (V. Dobrev, ed.), Springer Proceedings
in Mathematics & Statistics, vol. 335, Springer Nature Singapore Pte Ltd.,
2020, pp. 15-28, doi:
10.1007/978-981-15-7775-8_2. arXiv:
2006.16667. [ full info ] |
[316] |
T. Kobayashi, Topics on global analysis of manifolds and representation
theory of reductive groups, Lie Theory and Its Applications in Physics
(V. Dobrev, ed.), Springer Proceedings in Mathematics & Statistics, vol.
335, Springer Nature Singapore Pte Ltd., 2020, pp. 3-13,
doi:
10.1007/978-981-15-7775-8_1. arXiv:
2006.16680. [ full info ] |
[315] |
F. Kassel and T. Kobayashi, Spectral analysis on pseudo-Riemannian
locally symmetric spaces, Proc. Japan Acad. Ser. A Math. Sci. 96
(2020), no. 8, 69-74, doi:
10.3792/pjaa.96.013. arXiv:
2001.03292. [ full info ] |
[314] |
T. Kobayashi, Admissible restrictions of irreducible representations of
reductive Lie groups: Symplectic geometry and discrete decomposability,
Pure and Applied Mathematics Quarterly 17 (2021), no. 4, 1321-1343,
(special issue: in memory of Prof. Bertram Kostant).
doi:
10.4310/PAMQ.2021.v17.n4.a5. arXiv:
1907.12964. [ full info ] |
[279] |
T. Kobayashi, Recent advances in branching laws of representations
[hyogen no bunki-soku no saikin no shinten], Sugaku 71 (2019),
no. 4, 388-416 (Japanese). [ full info ] |
[277] |
T. Kobayashi, Conformal symmetry breaking on differential forms and some
applications, Geometric Methods in Physics XXXVI workshop 2017
(P. Kielanowski, A. Odzijewicz, and E. Previato, eds.), Trends in
Mathematics, Birkhäuser, Cham, 2019, pp. 289-308,
DOI:
10.1007/978-3-030-01156-7_32. arXiv:
1712.09212. [ full info ] |
[275] |
T. Kobayashi and B. Speh, Symmetry breaking for orthogonal groups and a
conjecture by B. Gross and D. Prasad, SSTF 2016: Geometric Aspects
of the Trace Formula (W. Müller, S. Shin, and N. Templier, eds.),
Simons Symposium on the Trace Formula, Springer, Cham, 2018, pp. 245-266,
Published online: 12 October 2018. Print ISBN: 978-3-319-94832-4. Online
ISBN: 978-3-319-94833-1. arXiv:
1702.00263. DOI:
10.1007/978-3-319-94833-1_8. [ full info ] |
[272] |
T. Kobayashi and A. Leontiev, Image of conformally covariant, symmetry
breaking operators for Rp,q, Quantum Theory and Symmetries
with Lie Theory and Its Applications in Physics. Volume 1. LT-XII/QTS-X 2017
(V. Dobrev, ed.), Springer Proceedings in Mathematics & Statistics, vol.
263, 2018, pp. 3-31, DOI:
10.1007/978-981-13-2715-5_1. [ full info ] |
[271] |
T. Kobayashi, Residue formula for regular symmetry breaking operators,
Contemporary Mathematics, vol. 714, pp. 175-193, Amer. Math.Soc., 2018,
arXiv: 1709.05035.
10.1090/conm/714/14380. [ full info ] |
[270] |
T. Kobayashi, Symmetry breaking operators for orthogonal groups
O(n,1), Mathematisches Forschungsinstitut Oberwolfach Report (2017),
no. 25, 1572-1575, DOI:
10.4171/OWR/2017/25. Harmonic
Analysis and the Trace Formula, Organised by Werner Müller, Sug Woo
Shin, Birgit Speh, and Nicolas Templier. [ full info ] |
[269] |
T. Kobayashi and S. Nasrin, Geometry of coadjoint orbits and
multiplicity-one branching laws for symmetric pairs, Algebras and Representation Theory 21 (2018),
no. 5, 1023-1036, Special Issue: Representation Theory at the Crossroads of
Modern Mathematics - Special volume in honor of Alexandre Kirillov.
DOI:
10.1007/s10468-018-9810-8. [ full info ] |
[268] |
T. Kobayashi and B. Speh, Symmetry breaking for representations of rank
one orthogonal groups II, Lecture Notes in Mathematics, vol. 2234,
Springer, 2018, eBook:978-981-13-2901-2.
arXiv: 1801.00158.
DOI:
10.1007/978-981-13-2901-2. [ full info ] |
[266] |
T. Kobayashi, T. Kubo, and M. Pevzner, Conformal symmetry breaking
operators for anti-de Sitter spaces,
Geometric Methods in
Physics XXXV (P. Kielanowski, A. Odzijewicz, and E. Previato, eds.), Trends
in Mathematics, Birkhäuser, Springer, 2018, pp. 75-91,
DOI:
10.1007/978-3-319-63594-1_9. arXiv:
1610.09475. [ full info ] |
[258] |
T. Kobayashi, Global analysis by hidden symmetry,
Progr. Math., 323 (2017), pp. 359-397,
a special issue in honour of Roger Howe for his 70th birthday.
DOI: 10.1007/978-3-319-59728-7_13.
arXiv: 160808356. [ full info ] |
[256] |
T. Kobayashi and A. Leontiev, Symmetry breaking operators for the
restriction of representations of indefinite orthogonal groups O(p,q),
Proc. Japan Acad. Ser. A Math. Sci. 93 (2017), no. 8, 86-91,
DOI: 10.3792/pjaa.93.86. [ full info ] |
[254] |
T. Kobayashi and A. Leontiev, Symmetry breaking operators for conformal
transformation groups o(p,q), Abstract Book of MSJ Spring Meeting 2017 at
Tokyo Metropolitan University, 2017, pp. 81-82 (Japanese). [ full info ] |
[250] |
T. Kobayashi, T. Kubo, and M. Pevzner, Conformal symmetry breaking
operators for differential forms on spheres,
Lecture Notes in Mathematics, vol.
2170, Springer Singapore, 2016, ix+192 pages.
DOI:
10.1007/978-981-10-2657-7. arXiv:
1605.09272. Softcover ISBN: 978-981-10-2656-0. eBook ISBN:
978-981-10-2657-7. [ full info ] |
[236] |
T. Kobayashi, T. Kubo, and M. Pevzner, Classification of differential
symmetry breaking operators for differential forms, C. R. Acad. Sci. Paris,
Ser.I 354 (2016), 671-676, published online 17 May 2016.
DOI:
10.1016/j.crma.2016.04.012. [ full info ] |
[227] |
T. Kobayashi and M. Pevzner, Differential symmetry breaking operators.
II. Rankin-Cohen operators for symmetric pairs, Selecta Mathematica (N.S.) 22 (2016), no. 2, 847-911, Published OnLine 14 December 2015. 65 pages.
DOI:
10.1007/s00029-015-0208-8.
arXiv:1301.2111. [old title of the
preprint version: Rankin-Cohen operators for symmetric pairs]. [ full info ] |
[226] |
T. Kobayashi and M. Pevzner, Differential symmetry breaking operators.
I. General theory and F-method., Selecta Mathematica (N.S.) 22 (2016), no. 2, 801-845, Published OnLine 11 December 2015. 45 pages.
DOI:
10.1007/s00029-015-0207-9.
arXiv:1301.2111. [old title of the
preprint version: Rankin-Cohen operators for symmetric pairs]. [ full info ] |
[222] |
T. Kobayashi, A program for branching problems in the representation
theory of real reductive groups, Representations of Reductive Groups: In Honor of
David A. Vogan, Jr. on his 60th Birthday (M. Nevins and P. Trapa,
eds.), Progress in Mathematics, vol. 312, Birkhäuser, 2015,
pp. 277-322, DOI:
10.1007/978-3-319-23443-4_10. arXiv:
1509.08861. ISBN: 978331923442. [ full info ] |
[219] |
T. Kobayashi, B. Ørsted, P. Somberg, and V. Souček, Branching
laws for Verma modules and applications in parabolic geometry. I,
Advances in Mathematics 285, 1796-1852,
DOI:10.1016/j.aim.2015.08.020.
arXiv:1305.6040. [ full info ] |
[215] |
T. Kobayashi and G. Savin, Global uniqueness of small representations,
Mathematische Zeitschrift 281 (2015), no. 1-2, 215-239. Published online first on 22 May 2015.
DOI:
10.1007/s00209-015-1481-0. arXiv:
1412.8019. [ full info ] |
[213] |
T. Kobayashi and B. Speh, Symmetry breaking for representations of rank
one orthogonal groups, vol. 238, Memoirs of American Mathematical Society, no. 1126, 2015, Published electronically May 12, 2015. 118 pp. arXiv: 1310.3213. ISBN:
978-1-4704-1922-6. DOI:
10.1090/memo/1126. [ full info ] |
[209] |
T. Kobayashi, Analysis on real spherical manifolds and their applications
to Shintani functions and symmetry breaking operators, Mathematisches
Forschungsinstitut Oberwolfach Report 11 (2014), no. 1, 176-179,
Representation Theory and Analysis of Reductive Groups: Spherical Spaces and
Hecke Algebras (organised by B. Krötz, E. M. Opdam, H. Schlichtkrull
and P. Trapa, 19-25 January 2014),
DOI: 10.4171/OWR/2014/3. [ full info ] |
[204] |
T. Kobayashi, T. Kubo, and M. Pevzner, Vector-valued covariant
differential operators for the Möbius transformation, Lie Theory and
Its Applications in Physics (V. Dobrev, ed.), Springer Proceedings in
Mathematics & Statistics, vol. 111, 2015, pp. 67-86,
arXiv: 1406.0674.
DOI:
10.1007/978-4-431-55285-7_6. [ full info ] |
[203] |
T. Kobayashi, Shintani functions, real spherical manifolds, and
symmetry breaking operators, Developments and Retrospectives in Lie Theory
Geometric and Analytic Methods (G. Mason, I. Penkov, and Joseph A. Wolf,
eds.), Developments in Mathematics, vol. 37, 2014, pp. 127-159,
arXiv: 1401.0117.
DOI:
10.1007/978-3-319-09934-7_5. [ full info ] |
[201] |
T. Kobayashi, Symmetric pairs with finite-multiplicity property for
branching laws of admissible representations, Proc. Japan Acad., Ser. A, Mathematical Sciences 90 (2014), no. 6, 79-83,
DOI: 10.3792/pjaa.90.79. [ full info ] |
[200] |
T. Kobayashi and T. Matsuki, Classification of finite-multiplicity
symmetric pairs, Transformation Groups 19 (2014), 457-493, Special
Issue in honour of Professor Dynkin for his 90th birthday.
DOI:
10.1007/s00031-014-9265-x. arXiv:
1312.4246. [ full info ] |
[197] | T. Kobayashi and B. Speh, Intertwining operators and the restriction of representations of rank one orthogonal groups, C. R. Acad. Sci. Paris, Ser. I 352 (2014), 89-94, DOI: 10.1016/j.crma.2013.11.018. [ full info ] |
[196] |
T. Kobayashi, F-method for symmetry breaking operators, Differential
Geometry and its Applications 33 (2014), 272-289, Special Issue
・スgInteraction of Geometry and Representation Theory: Exploring New
Frontiers・スh (in honor of Michael Eastwood's 60th birthday).
arXiv:1303.3541.
DOI:10.1016/j.difgeo.2013.10.003. [ full info ] |
[194] |
T. Kobayashi, Special functions in minimal representations, Perspectives
in Representation Theory in honor of Igor Frenkel on his 60th birthday
(Pavel Etingof, Miikhail Khovanov, and Alistair Savage, eds.), Comtemporary
Mathematics, vol. 610, Amer. Math. Soc., Providence, RI, 2014, pp. 253-266,
DOI: 10.1090/conm/610/12103.
arXiv:1301.5505. [ full info ] |
[180] |
T. Kobayashi, F-method for constructing equivariant differential
operators, Geometric Analysis and Integral Geometry (E. T. Quinto, F. B.
Gonzalez, and J. Christensen, eds.), Comtemporary Mathematics, vol. 598,
Amer. Math. Soc., 2013, pp. 141-148,
arXiv: 1212.6862.
DOI: 10.1090.conm/598/11998. [ full info ] |
[179] |
T. Kobayashi, Varna lecture on L2-analysis of minimal
representations, Lie Theory and Its Applications in Physics: IXth
International Workshop (V. Dobrev, ed.), Springer Proceedings in Mathematics
& Statistics, vol. 36, Springer, 2013, pp. 77-93,
DOI:
10.1007/978-4-431-54270-4_6. arXiv:
1212.6871. [ full info ] |
[178] |
T. Kobayashi and Y. Oshima, Classification of symmetric pairs with
discretely decomposable restrictions of (g,K)-modules,
Journal für die reine und angewandte Mathematik (Crelles Journal)
2015 (2015), no. 703, 201-223, published online 2013 July 13. 19
pp.
DOI:10.1515/crelle-2013-0045.
arXiv: 1202.5743. [ full info ] |
[177] |
T. Kobayashi and T. Oshima, Finite multiplicity theorems
for induction and restriction, Advances in Mathematics 248 (2013), 921-944.
DOI:10.1016/j.aim.2013.07.015.
arXiv:1108.3477. [ full info ] |
[176] |
T. Kobayashi, Propagation of multiplicity-free property for holomorphic
vector bundles,
Lie
Groups: Structure, Actions, and Representations (In Honor of Joseph A.
Wolf on the Occasion of his 75th Birthday) (A. Huckleberry, I. Penkov, and
G. Zuckerman, eds.), Progress in Mathematics, vol. 306, 2013, pp. 113-140,
ISBN: 978-1-4614-7192-9.
DOI:10.1007/978-1-4614-7193-6_6.
arXiv:math/0607004. [ full info ] |
[165] |
T. Kobayashi and Y. Oshima, Classification of discretely decomposable
Aq(λ) with respect to reductive symmetric pairs, Advances in Mathematics 231 (2012), 2013-2047,
arXiv:1104.4400.
DOI:10.1016/j.aim.2012.07.006. [ full info ] |
[164] |
T. Kobayashi, Restrictions of generalized Verma modules to symmetric
pairs,
Transformation Groups 17 (2012), no. 2, 523-546, (published online first 5 April 2012).
DOI: 10.1007/s00031-012-9180-y.
arXiv:1008.4544 [math.RT]. [ full info ] |
[163] |
S. Ben Saïd, T. Kobayashi, and B. Ørsted, Laguerre
semigroup and Dunkl operators, Compositio Mathematica 148 (2012), 1265-1336, DOI: 10.1112/S0010437X11007445.
arXiv:0907.3749 [math.RT]. [ full info ] |
[154] |
T. Kobayashi, Branching problems of Zuckerman derived functor modules,
Representation Theory and Mathematical Physics (in honor of Gregg Zuckerman)
(Jeffrey Adams, Bong Lian, and Siddhartha Sahi, eds.), Contemporary
Mathematics, vol. 557, Amer. Math. Soc., Providence, RI, 2011, pp. 23-40,
ISBN・スF 9780821852460, arXiv:1104.4399. [ full info ] |
[151] |
T. Kobayashi, B. Ørsted, and M. Pevzner, Geometric analysis on
small unitary representations of GL(n,R), J. Funct. Anal.
260 (2011), no. 6, 1682-1720, (published online first, on 28
December 2010). DOI:
10.1016/j.jfa/2010.12.008.
arXiv:1002.3006 [math.RT]. [ full info ] |
[147] |
J.-L. Clerc, T. Kobayashi, B. Ørsted, and M. Pevzner, Generalized
Bernstein-Reznikov integrals, Mathematische Annalen 349
(2011), no. 2, 395-431, (published online first, on 4 May 2010). DOI:
10.1007/s00208-010-0516-4.
arXiv:0906.2874 [math.CA]. [ full info ] |
[126] |
T. Kobayashi, Hidden symmetries and spectrum of the Laplacian on an
indefinite Riemannian manifold, Spectral Analysis in Geometry and Number
Theory (in honor of Professor Sunada) (M. Kotani, H. Naito, and T. Tate,
eds.), Contemp. Math., vol. 484, Amer. Math. Soc., Providence, RI, 2009,
pp. 73-87. [ full info ] |
[101] |
T. Kobayashi, Multiplicity-free theorems of the restrictions of unitary
highest weight modules with respect to reductive symmetric pairs,
Representation Theory and Automorphic Forms, Progr. Math., vol. 255,
Birkhäuser, 2007, pp. 45-109,
math.RT/0607002. [ full info ] |
[87] |
T. Kobayashi, Theory of discrete decomposable branching laws of unitary
representations of semisimple Lie groups and some applications, Sugaku
Expositions 18 (2005), 1-37, a translation of the
original article in Japanese. [ full info ] |
[85] |
T. Kobayashi, Restrictions of unitary representations of real reductive
groups, Lie Theory: Unitary Representations and Compactifications of
Symmetric Spaces (J.-P. Anker and B. Ørsted, eds.), Progress in
Mathematics 229, Birkhauser, 2005, pp. 139-207. [ full info ] |
[65] |
T. Kobayashi, Branching problems of unitary representations, Proc. of ICM
2002, Beijing, vol. 2, 2002, pp. 615-627,
math.RT/0304326. [ full info ] |
[60] |
T. Kobayashi, Discretely decomposable restrictions of unitary representations
of reductive Lie groups - examples and conjectures, Advanced Study in
Pure Mathematics, Analysis on Homogeneous Spaces and Representation Theory of
Lie Groups, Okayama-Kyoto (T. Kobayashi, M. Kashiwara, T. Matsuki,
K. Nishiyama, and T. Oshima, eds.), vol. 26, 2000, pp. 98-126. [ full info ] |
[59] |
T. Kobayashi, Multiplicity-free restrictions of unitary highest weight modules
for reductive symmetric pairs, preprint UTMS 2000-1. [ full info ] |
[54] |
T. Kobayashi, Theory of discretely decomposable restrictions of unitary
representations of semisimple Lie groups and its developments, Sugaku
51 (1999), no. 4, 337-356 (in Japanese), an English
translation is available. [ full info ] |
[53] |
T. Kobayashi, Theory of discretely decomposable restrictions of unitary
representations and its development, Proceedings of Plenary Lectures of the
Mathematical Society of Japan, held at Gakushuin University, Tokyo, March,
1999, 1999, pp. 1-19 (in Japanese). [ full info ] |
[50] |
T. Kobayashi, Discrete decomposability of the restriction of
Aq(λ) with respect to reductive subgroups
III - restriction of Harish-Chandra modules and associated
varieties, Invent. Math. 131 (1998), 229-256. [ full info ] |
[49] |
T. Kobayashi and T. Oda, A vanishing theorem for modular symbols on
locally symmetric spaces, Comment. Math. Helv. 73 (1998), 45-70. [ full info ] |
[48] |
T. Kobayashi, Discrete decomposability of the restriction of
Aq(λ) with respect to reductive subgroups II
- micro-local analysis and asymptotic K-support, Annals of Math.
147 (1998),
no. 3, 709-729. [ full info ] |
[47] |
T. Kobayashi, Discrete series representations for the orbit spaces arising
from two involutions of real reductive Lie groups, J. Funct. Anal.
152 (1998), 100-135. [ full info ] |
[46] |
T. Kobayashi, Harmonic analysis on homogeneous manifolds of reductive type and
unitary representation theory, Translations, Series II, Selected Papers on
Harmonic Analysis, Groups, and Invariants (K. Nomizu, ed.), vol. 183, Amer.
Math. Soc., 1998, pp. 1-31, ISBN 0-8218-0840-0. [ full info ] |
[42] |
T. Kobayashi, Lp-analysis on homogeneous manifolds of reductive type and
representation theory, Proc. Japan Acad. 73 (1997), 62-66. [ full info ] |
[40] |
T. Kobayashi, Monastir Seminar on the restriction of unitary
representations and their applications, Proceedings of the CIMPA School,
held in Tunisia, July-August 1996 (P. Torasso, ed.),
1997. [ full info ] |
[39] |
T. Kobayashi, On the restriction of unitary representations and their
applications, Proceedings of Symposium on Representation Theory, Mikawa,
1996, pp. 131-141 (in Japanese). [ full info ] |
[38] |
T. Kobayashi and T. Oshima, Multiplicities of induced representations of
semisimple Lie groups, unpublished notes, 1996. [ full info ] |
[37] |
T. Kobayashi, A vanishing theorem of modular symbols on locally symmetric
varieties, (notes taken by S. Ishikawa), Proceedings of
Representation
Theory and Related Topics, Kurashiki 1996 (N. Shimeno, ed.), 1996, pp. 1-16
(in Japanese). [ full info ] |
[34] |
T. Kobayashi, Introduction to harmonic analysis on spherical homogeneous
spaces,
Proceedings of 3rd Summer School on Number Theory ''Homogeneous Spaces and Automorphic
Forms'' held at Rikkyo University, January 1995 and at Yamagata-mura in
Nagano August 1995 (F. Sato, ed.), 1995, pp. 22-41 (in Japanese). [ full info ] |
[33] |
T. Kobayashi, The restriction of Aq(λ) to reductive
subgroups II, Proc. Japan Acad. Ser. A 71 (1995), 24-26. [ full info ] |
[30] |
T. Kobayashi, Discrete decomposability of the restriction of
Aq(λ) with respect to reductive subgroups and its
applications, Invent. Math. 117 (1994), 181-205. [ full info ] |
[25] |
T. Kobayashi, The restriction of Aq(λ) to reductive
subgroups, Proc. Japan Acad. Ser. A 69 (1993), 262-267. [ full info ] |
[6] |
T. Kobayashi, Some examples of the branching rule of unitary representations
associated to isomorphisms of homogeneous spaces, unpublished notes, 1990. [ full info ] |
© Toshiyuki Kobayashi