Lie Groups and Representation Theory
Seminar information archive ~05/01|Next seminar|Future seminars 05/02~
Date, time & place | Tuesday 16:30 - 18:00 126Room #126 (Graduate School of Math. Sci. Bldg.) |
---|
2009/08/12
10:00-16:30 Room #002 (Graduate School of Math. Sci. Bldg.)
Sigurdur Helgason (MIT) 10:00-11:00
Radon Transform and some Applications
Fulton G. Gonzalez (Tufts University) 11:20-12:20
Multitemporal Wave Equations: Mean Value Solutins
Angela Pasquale (Universite Metz) 14:00-15:00
Analytic continuation of the resolvent of the Laplacian in the Euclidean settings
Decay of smooth vectors for regular representations
Sigurdur Helgason (MIT) 10:00-11:00
Radon Transform and some Applications
Fulton G. Gonzalez (Tufts University) 11:20-12:20
Multitemporal Wave Equations: Mean Value Solutins
Angela Pasquale (Universite Metz) 14:00-15:00
Analytic continuation of the resolvent of the Laplacian in the Euclidean settings
[ Abstract ]
We discuss the analytic continuation of the resolvent of the Laplace operator on symmetric spaces of the Euclidean type and some generalizations to the rational Dunkl setting.
Henrik Schlichtkrull (University of Copenhagen) 15:30-16:30We discuss the analytic continuation of the resolvent of the Laplace operator on symmetric spaces of the Euclidean type and some generalizations to the rational Dunkl setting.
Decay of smooth vectors for regular representations
[ Abstract ]
Let $G/H$ be a homogeneous space of a Lie group, and consider the regular representation $L$ of $G$ on $E=L^p(G/H)$. A smooth vector for $L$ is a function $f$ in $E$ such that $g$ mapsto $L(g)f$ is smooth, $G$ to $E$. We investigate circumstances under which all such functions decay at infinity (jt with B. Krotz)
Let $G/H$ be a homogeneous space of a Lie group, and consider the regular representation $L$ of $G$ on $E=L^p(G/H)$. A smooth vector for $L$ is a function $f$ in $E$ such that $g$ mapsto $L(g)f$ is smooth, $G$ to $E$. We investigate circumstances under which all such functions decay at infinity (jt with B. Krotz)