GCOE Seminars
Seminar information archive ~05/01|Next seminar|Future seminars 05/02~
2012/03/06
16:00-17:00 Room #370 (Graduate School of Math. Sci. Bldg.)
Dietmar Hoemberg (Weierstrass Institute, Berlin)
On the phase field approach to shape and topology optimization (ENGLISH)
Dietmar Hoemberg (Weierstrass Institute, Berlin)
On the phase field approach to shape and topology optimization (ENGLISH)
[ Abstract ]
Owing to different densities of the respective phases, solid-solid phase transitions often are accompanied by (often undesired) changes in workpiece size and shape. In my talk I will address the reverse question of finding an optimal phase mixture in order to accomplish a desired workpiece shape.
From mathematical point of view this corresponds to an optimal shape design problem subject to a static mechanical equilibrium problem with phase dependent stiffness tensor, in which the two phases exhibit different densities leading to different internal stresses. Our goal is to tackle this problem using a phasefield relaxation.
To this end we first briefly recall previous works regarding phasefield approaches to topology optimization (e.g. by Bourdin ¥& Chambolle, Burger ¥& Stainko and Blank, Garcke et al.).
We add a Ginzburg-Landau term to our cost functional, derive an adjoint equation for the displacement and choose a gradient flow dynamics with an articial time variable for our phasefield variable. We discuss well-posedness results for the resulting system and conclude with some numerical results.
Owing to different densities of the respective phases, solid-solid phase transitions often are accompanied by (often undesired) changes in workpiece size and shape. In my talk I will address the reverse question of finding an optimal phase mixture in order to accomplish a desired workpiece shape.
From mathematical point of view this corresponds to an optimal shape design problem subject to a static mechanical equilibrium problem with phase dependent stiffness tensor, in which the two phases exhibit different densities leading to different internal stresses. Our goal is to tackle this problem using a phasefield relaxation.
To this end we first briefly recall previous works regarding phasefield approaches to topology optimization (e.g. by Bourdin ¥& Chambolle, Burger ¥& Stainko and Blank, Garcke et al.).
We add a Ginzburg-Landau term to our cost functional, derive an adjoint equation for the displacement and choose a gradient flow dynamics with an articial time variable for our phasefield variable. We discuss well-posedness results for the resulting system and conclude with some numerical results.