Discrete mathematical modelling seminar

Seminar information archive ~04/18Next seminarFuture seminars 04/19~

Organizer(s) Tetsuji Tokihiro, Ralph Willox

Seminar information archive

2018/11/19

17:15-18:30   Room #056 (Graduate School of Math. Sci. Bldg.)
Dinh T. Tran (School of Mathematics and Statistics, The University of Sydney)
Integrability for four-dimensional recurrence relations
[ Abstract ]
In this talk, we study some fourth-order recurrence relations (or mappings). These recurrence relations were obtained by assuming that they possess two polynomial integrals with certain degree patterns.
For mappings with cubic growth, we will reduce them to three-dimensional ones using a procedure called deflation. These three-dimensional maps have two integrals; therefore, they are integrable in the sense of Liouville-Arnold. Furthermore, we can reduce the obtained three-dimensional maps to two-dimensional maps of Quispel-Roberts-Thompsons (QRT) type. On the other hand, for recurrences with quadratic growth and two integrals, we will show that they are integrable in the sense of Liouville-Arnold by providing their Poisson brackets. Non-degenerate Poisson brackets can be found by using the existence of discrete Lagrangians and a discrete analogue of the Ostrogradsky transformation.
This is joint work with G. Gubbiotti, N. Joshi, and C-M. Viallet.

2018/06/25

17:30-18:30   Room #056 (Graduate School of Math. Sci. Bldg.)
Anton Dzhamay (University of Northern Colorado)
Gap Probabilities and discrete Painlevé equations
[ Abstract ]
It is well-known that important statistical quantities, such as gap probabilities, in various discrete probabilistic models of random matrix type satisfy the so-called discrete Painlevé equations, which provides an effective way to computing them. In this talk we discuss this correspondence for a particular class of models, known as boxed plane partitions (equivalently, lozenge tilings of a hexagon). For uniform probability distribution, this is one of the most studied models of random surfaces. Borodin, Gorin, and Rains showed that it is possible to assign a very general elliptic weight to the distribution, with various degenerations of this weight corresponding to the degeneration cascade of discrete polynomial ensembles, such as Racah and Hahn ensembles and their q-analogues. This also correspond to the degeneration scheme of discrete Painlevé equations, due to Sakai. In this talk we consider the q-Hahn and q-Racah ensembles and corresponding discrete Painlevé equations of types q-P(A_{2}^{(1)}) and q-P(A_{1}^{(1)}).
This is joint work with Alisa Knizel (Columbia University)

2018/01/17

17:00-18:45   Room #056 (Graduate School of Math. Sci. Bldg.)
Samuel Colin (CBPF, Rio de Janeiro, Brasil) 17:00-17:50
Quantum matter bounce with a dark energy expanding phase (ENGLISH)
[ Abstract ]
The ``matter bounce'' is an alternative scenario to inflationary cosmology, according to which the universe undergoes a contraction, followed by an expansion, the bounce occurring when the quantum effects become important. In my talk, I will show that such a scenario can be unambiguously analyzed in the de Broglie-Bohm pilot-wave interpretation of quantum mechanics. More specifically, I will apply the pilot-wave theory to a Wheeler-DeWitt equation obtained from the quantization of a simple classical mini-superspace model, and show that there are numerical solutions describing bouncing universes with many desirable physical features. For example, one solution contains a dark energy phase during the expansion, without the need to postulate the existence of a cosmological constant in the classical action.
This work was done in collaboration with Nelson Pinto-Neto (CBPF, Rio de Janeiro, Brasil). Further details available at https://arxiv.org/abs/1706.03037.
Thomas Durt (Aix Marseille Université, Centrale Marseille, Institut Fresnel) 17:50-18:40
Mass of the vacuum: a Newtonian perspective (ENGLISH)
[ Abstract ]
One could believe that special relativity forces us to totally renounce to the idea of an aether, but the aether reappears in general relativity which teaches us that space-time is structured by the local metrics. It also reappears in quantum field theory which teaches us that even at zero temperature space is filled by the quantum vacuum energy. Finally, aether reappears in modern astronomy where it was necessary to introduce ill-defined concepts such as dark matter and dark energy in order to explain apparent deviations from Newtonian dynamics (at the level of galactic rotation curves).
Newton dynamics being the unique limit of general relativistic dynamics in the classical regime, dark matter and dark energy can be seen as an ultimate, last chance strategy, aimed at reconciling the predictions of general relativity with astronomical data.
In our talk we shall describe a simple model, derived in the framework of Newtonian dynamics, aimed at explaining puzzling astronomical observations realized at the level of the solar system (Pioneer anomaly) and at the galactic scale (rotation curves), without adopting ad hoc hypotheses about the existence of dark matter and/or dark energy.
The basic idea is that Newtonian gravity is modified due to the presence of a (negative) density, everywhere in space, of mass-energy.

2017/11/01

17:00-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Basile Grammaticos (Université de Paris VII・XI)
Discrete Painlevé equations associated with the E8 group (ENGLISH)
[ Abstract ]
I'll present a summary of the results of the Paris-Tokyo-Pondicherry group on equations associated with the affine Weyl group E8. I shall review the various parametrisations of the E8-related equations, introducing the trihomographic representation and the ancillary variable. Several examples of E8-associated equations will be given including what we believe is the simplest form for the generic elliptic discrete Painlevé equation.

2017/10/31

16:30-17:30   Room #126 (Graduate School of Math. Sci. Bldg.)
Basile Grammaticos (Université de Paris VII・XI)
The end of the World (ENGLISH)
[ Abstract ]
This is not a seminar on astrophysics or cosmology. I am not going to talk about something that will happen in billions of years. I will rather explain the menace to our civilisation and to the human species. Inspired from the works of several authors I will explain the existing risks. I will also present mathematical models which show that a general collapse is possible in the decades that follow.

2017/10/31

15:30-16:30   Room #126 (Graduate School of Math. Sci. Bldg.)
Fon-Che Liu (National Taiwan University)
A hierarchy of approximate regularity of functions (ENGLISH)
[ Abstract ]
A hierarchy of a certain weakly sensed regularity of functions defined on subsets of Euclidean n-space which originated from the well-known Lusin theorem that characterizes measurable functions in terms of approximate continuity will be introduced. Its intimate relations with the ordinary hierarchy of regularity in terms of order of continuous differentiability will be exposed and explained.

2017/04/26

15:30-17:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Yohei Tutiya (Kanagawa Institute of Technology)
[Recent topics in nonlocal classical integrable systems] (JAPANESE)

2017/02/09

17:30-18:30   Room #056 (Graduate School of Math. Sci. Bldg.)
Dinh Tran (University of New South Wales, Sydney, Australia)
Growth of degrees of lattice equations and its signatures over finite fields (ENGLISH)
[ Abstract ]
We study growth of degrees of autonomous and non-autonomous lattice equations, some of which are known to be integrable. We present a conjecture that helps us to prove polynomial growth of a certain class of equations including $Q_V$ and its non-autonomous generalization. In addition, we also study growth of degrees of several non-integrable equations. Exponential growth of degrees of these equations is also proved subject to a conjecture. Our technique is to determine the ambient degree growth of the equations and a conjectured growth of their common factors at each vertex, allowing the true degree growth to be found. Moreover, our results can also be used for mappings obtained as periodic reductions of integrable lattice equations. We also study signatures of growth of degrees of lattice equations over finite fields.

2016/12/19

17:30-18:30   Room #056 (Graduate School of Math. Sci. Bldg.)
Anton Dzhamay (University of Northern Colorado)
Discrete Painlevé equations on the affine A3 surface (ENGLISH)
[ Abstract ]
We explain how to construct the birational representation of the extended affine Weyl symmetry group D5 and consider examples of discrete Painlevé equations that correspond to certain translation elements in this group. One of the examples is the famous q-PV equation of Jimbo-Sakai. Some other examples are conjugated to it via explicit change of variables and we explain how representing translation elements as words in the group allows us to see the corresponding change of coordinates explicitly. We also show a new example of a discrete Painlevé equation that is elementary (short translation), but at the same time is different from the q-PVI equation.

2016/12/17

10:00-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Anton Dzhamay (University of Northern Colorado) 10:00-10:50
Factorization of Rational Mappings and Geometric Deautonomization (ENGLISH)
[ Abstract ]
This talk is the first of two talks describing the joint project with Tomoyuki Takenawa and Stefan Carstea on geometric deautonomization.
The goal of this project is to develop a systematic approach for deautonomizing discrete integrable mappings, such as the QRT mappings, to non-automonous mappings in the discrete Painlevé family, based on the action of the mapping on the Picard lattice of the surface and a choice of an elliptic fiber. In this talk we will explain the main ideas behind this approach and describe the technique that allows us to recover explicit formulas defining the mapping from the known action on the divisor group (the factorization technique). We illustrate our approach by reconstructing the famous example of the q-PVI equation of Jimbo-Sakai from a simple QRT mapping.
Tomoyuki Takenawa (Tokyo University of Marine Science and Technology) 11:00-11:50
From the QRT maps to elliptic difference Painlevé equations (ENGLISH)
[ Abstract ]
This talk is the second part of the joint project with Anton Dzhamay and Stefan Carstea on geometric deautonomization and focuses on the elliptic case and the special symmetry groups. It is well known that two-dimensional mappings preserving a rational elliptic fibration, like the Quispel-Roberts-Thompson mappings, can be deautonomized to discrete Painlevé equations. However, the dependence of this procedure on the choice of a particular elliptic fiber has not been sufficiently investigated.
In this talk we establish a way of performing the deautonomization for a pair of an autonomous mapping and a fiber. Especially, in the case where the fiber is smooth elliptic, imposing certain restrictions on such non autonomous mappings, we obtain new and simple elliptic difference Painlevé equations, including examples whose symmetry groups do not appear explicitly in Sakai's classification.
Hiroshi Kawakami (Aoyama Gakuin University) 13:30-14:20
The complete degeneration scheme of four-dimensional Painlevé-type equations (ENGLISH)
[ Abstract ]
In the joint work with H. Sakai and A. Nakamura, we constructed the degeneration scheme of four-dimensional Painlevé-type equations associated with unramified linear equations. In this talk I present the "complete" degeneration scheme of the four-dimensional Painlevé-type equations, which is constructed by means of the degeneration of HTL forms of associated linear equations.
Akane Nakamura (Josai University) 14:30-15:20
Degeneration of the Painlevé divisors (ENGLISH)
[ Abstract ]
There are three types of curves associated with 4-dimensional algebraically completely integrable systems, namely the spectral curve, the Painlevé divisors, and the separation curve. I am going to explain these three curves of genus two taking examples derived from the isospectral limit of the 4-dimensional Painlevé-type equations and study the Namikawa-Ueno type degeneration.
Teruhisa Tsuda (Hitotsubashi University) 16:00-16:50
Rational approximation and Schlesinger transformation (ENGLISH)
[ Abstract ]
We show how rational approximation problems for functions are related to the construction of Schlesinger transformations. Also we discuss their applications to the theory of isomonodromic deformations or Painlevé equations. This talk is based on a joint work with Toshiyuki Mano.
Takafumi Mase (the University of Tokyo) 17:00-17:50
Spaces of initial conditions for nonautonomous mappings of the plane (ENGLISH)
[ Abstract ]
Spaces of initial conditions are one of the most important and powerful tools to analyze mappings of the plane. In this talk, we study the basic properties of general nonautonomous equations that have spaces of initial conditions. We will consider the minimization of spaces of initial conditions for nonautonomous systems and we shall discuss a classification of nonautonomous integrable mappings of the plane with a space of initial conditions.

2016/11/28

17:15-18:30   Room #056 (Graduate School of Math. Sci. Bldg.)
Alfred Ramani (IMNC, Universite de Paris 7 et 11)
Who cares about integrability ? (ENGLISH)
[ Abstract ]
I will start my talk with an introduction to integrability of continuous systems. Why is it important? Is it possible to give a definition of integrability which will satisfy everybody? (Short answer: No). I will then present the most salient discoveries of integrable systems, from Newton to Toda. Next I will address the question of discrete integrability. This will lead naturally to the question of discretisation (of continuous systems) and its importance in modelling. I will deal with the construction of integrable discretisations of continuous integrable systems and introduce the singularity confinement discrete integrability criterion. The final part of my talk will be devoted to discrete Painlevé equations. Due to obvious time constraints I will concentrate on one special class of these equations, namely those associated to the E8 affine Weyl group. I will present a succinct summary of our recent results as well as indications for future investigations.

2016/11/19

14:00-17:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Takayuki Hasegawa (Toyama National College of Technology) 14:00-15:15
(JAPANESE)
Hironobu Fujishima (Canon) 15:45-17:00
(JAPANESE)

< Previous 12