Numerical Analysis Seminar

Seminar information archive ~12/01Next seminarFuture seminars 12/02~

Date, time & place Tuesday 16:30 - 18:00 002Room #002 (Graduate School of Math. Sci. Bldg.)
Organizer(s) Norikazu Saito, Takahito Kashiwabara

2025/11/25

16:30-18:00   Room #117 (Graduate School of Math. Sci. Bldg.)
Lars Diening (Bielefeld University)
Sobolev stability of the $L^2$-projection (English)
[ Abstract ]
We prove the $W^{1,2}$-stability of the $L^2$-projection on Lagrange elements for adaptive meshes and arbitrary polynomial degree. This property is especially important for the numerical analysis of parabolic problems. We will explain that the stability of the projection is connected to the grading constants of the underlying adaptive refinement routine. For arbitrary dimensions, we show that the bisection algorithm of Maubach and Traxler produces meshes with a grading constant 2. This implies $W^{1,2}$-stability of the $L^2$-projection up to dimension six.
[ Reference URL ]
https://sites.google.com/g.ecc.u-tokyo.ac.jp/utnas-bulletin-board/