Tuesday Seminar of Analysis
Seminar information archive ~12/07|Next seminar|Future seminars 12/08~
Date, time & place | Tuesday 16:00 - 17:30 156Room #156 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | ISHIGE Kazuhiro, SAKAI Hidetaka, ITO Kenichi |
2023/06/06
17:00-18:30 Room #128 (Graduate School of Math. Sci. Bldg.)
Erik Skibsted (Aarhus University)
Stationary completeness; the many-body short-range case (English)
https://forms.gle/kWHDfb6J6kcjfSah8
Erik Skibsted (Aarhus University)
Stationary completeness; the many-body short-range case (English)
[ Abstract ]
For a general class of many-body Schr\"odinger operators with short-range pair-potentials the wave and scattering matrices as well as the restricted wave operators are all defined at any non-threshold energy. In fact this holds without imposing any a priori decay condition on channel eigenstates and even for models including long-range potentials of Derezi\'nski-Enss type. For short-range models we improve on the known \emph{weak continuity} statements in that we show that all non-threshold energies are \emph{stationary complete}, resolving in this case a recent conjecture. A consequence is that the above scattering quantities depend \emph{strongly continuously} on the energy parameter at all non-threshold energies (whence not only almost everywhere as previously demonstrated). Another consequence is that the scattering matrix is unitary at any such energy. Our procedure yields (as a side result) a new and purely stationary proof of asymptotic completeness for many-body short-range systems.
[ Reference URL ]For a general class of many-body Schr\"odinger operators with short-range pair-potentials the wave and scattering matrices as well as the restricted wave operators are all defined at any non-threshold energy. In fact this holds without imposing any a priori decay condition on channel eigenstates and even for models including long-range potentials of Derezi\'nski-Enss type. For short-range models we improve on the known \emph{weak continuity} statements in that we show that all non-threshold energies are \emph{stationary complete}, resolving in this case a recent conjecture. A consequence is that the above scattering quantities depend \emph{strongly continuously} on the energy parameter at all non-threshold energies (whence not only almost everywhere as previously demonstrated). Another consequence is that the scattering matrix is unitary at any such energy. Our procedure yields (as a side result) a new and purely stationary proof of asymptotic completeness for many-body short-range systems.
https://forms.gle/kWHDfb6J6kcjfSah8