Tokyo-Nagoya Algebra Seminar
Seminar information archive ~09/19|Next seminar|Future seminars 09/20~
Organizer(s) | Noriyuki Abe, Aaron Chan, Osamu Iyama, Yasuaki Gyoda, Hiroyuki Nakaoka, Ryo Takahashi |
---|
2023/04/21
13:00-14:30 Online
Please see the reference URL for details on the online seminar.
Kota Murakami (University of Tokyo)
Categorifications of deformed Cartan matrices (Japanese)
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html
Please see the reference URL for details on the online seminar.
Kota Murakami (University of Tokyo)
Categorifications of deformed Cartan matrices (Japanese)
[ Abstract ]
In a series of works of Gei\ss-Leclerc-Schr\″oer, they introduced a version of preprojective algebra associated with a symmetrizable generalized Cartan matrix and its symmetrizer. For finite type, it can be regarded as an un-graded analogue of Jacobian algebra of certain quiver with potential appeared in the theory of (monoidal) categorification of cluster algebras.
In this talk, we will present an interpretation of graded structures of the preprojective algebra of general type, in terms of a multi-parameter deformation of generalized Cartan matrix and relevant combinatorics motivated from several contexts in the theory of quantum loop algebras or quiver $\mathcal{W}$-algebras. From the vantage point of the representation theory of preprojective algebra, we will prove several purely combinatorial properties of these concepts. This talk is based on a joint work with Ryo Fujita (RIMS).
[ Reference URL ]In a series of works of Gei\ss-Leclerc-Schr\″oer, they introduced a version of preprojective algebra associated with a symmetrizable generalized Cartan matrix and its symmetrizer. For finite type, it can be regarded as an un-graded analogue of Jacobian algebra of certain quiver with potential appeared in the theory of (monoidal) categorification of cluster algebras.
In this talk, we will present an interpretation of graded structures of the preprojective algebra of general type, in terms of a multi-parameter deformation of generalized Cartan matrix and relevant combinatorics motivated from several contexts in the theory of quantum loop algebras or quiver $\mathcal{W}$-algebras. From the vantage point of the representation theory of preprojective algebra, we will prove several purely combinatorial properties of these concepts. This talk is based on a joint work with Ryo Fujita (RIMS).
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html