Tuesday Seminar of Analysis

Seminar information archive ~05/18Next seminarFuture seminars 05/19~

Date, time & place Tuesday 16:00 - 17:30 156Room #156 (Graduate School of Math. Sci. Bldg.)
Organizer(s) ISHIGE Kazuhiro, SAKAI Hidetaka, ITO Kenichi


16:00-17:30   Room #126 (Graduate School of Math. Sci. Bldg.)
WAKUI Hiroshi (Tokyo University of Science)
Existence of a bounded forward self-similar solution to a minimal Keller-Segel model (Japanese)
[ Abstract ]
In this talk, we consider existence of a bounded forward self-similar solution to the initial value problem of a minimal Keller-Segel model. It is well known that the mass conservation law plays an important role to classify its large time behavior of solutions to Keller-Segel models. On the other hand, we could not expect existence of self-similar solutions to our problem with the mass conservation law except for the two dimensional case due to the scaling invariance of our problem. We will show existence of a forward self-similar solution to our problem. The key idea to guarantee boundedness of its self-similar solution is to choose a concrete upper barrier function using the hypergeometric function.
[ Reference URL ]