Tokyo-Nagoya Algebra Seminar

Seminar information archive ~05/18Next seminarFuture seminars 05/19~

Organizer(s) Noriyuki Abe, Aaron Chan, Osamu Iyama, Yasuaki Gyoda, Hiroyuki Nakaoka, Ryo Takahashi


10:30-12:00   Online
Please see the reference URL for details on the online seminar.
Yuta Kimura (Osaka Metropolitan University)
Tilting ideals of deformed preprojective algebras
[ Abstract ]
Let $K$ be a field and $Q$ a finite quiver. For a weight $\lambda \in K^{|Q_0|}$, the deformed preprojective algebra $\Pi^{\lambda}$ was introduced by Crawley-Boevey and Holland to study deformations of Kleinian singularities. If $\lambda = 0$, then $\Pi^{0}$ is the preprojective algebra introduced by Gelfand-Ponomarev, and appears many areas of mathematics. Among interesting properties of $\Pi^{0}$, the classification of tilting ideals of $\Pi^{0}$, shown by Buan-Iyama-Reiten-Scott, is fundamental and important. They constructed a bijection between the set of tilting ideals of $\Pi^{0}$ and the Coxeter group $W_Q$ of $Q$.

In this talk, when $Q$ is non-Dynkin, we see that $\Pi^{\lambda}$ is a $2$-Calabi-Yau algebra, and show that there exists a bijection between tilting ideals and a Coxeter group. However $W_Q$ does not appear, since $\Pi^{\lambda}$ is not necessary basic. Instead of $W_Q$, we consider the Ext-quiver of rigid simple modules, and use its Coxeter group. When $Q$ is an extended Dynkin quiver, we see that the Ext-quiver is finite and this has an information of singularities of a representation space of semisimple modules.
This is joint work with William Crawley-Boevey.
[ Reference URL ]