Lie Groups and Representation Theory
Seminar information archive ~09/11|Next seminar|Future seminars 09/12~
Date, time & place | Tuesday 16:30 - 18:00 126Room #126 (Graduate School of Math. Sci. Bldg.) |
---|
2021/11/30
17:00-18:00 Room #on line (Graduate School of Math. Sci. Bldg.)
Quentin Labriet (Reims University)
Branching problems for conformal Lie groups and orthogonal polynomials (English)
Quentin Labriet (Reims University)
Branching problems for conformal Lie groups and orthogonal polynomials (English)
[ Abstract ]
In this talk, I will present some results obtained during my PhD about a link between branching problems for conformal Lie groups and orthogonal polynomials. More precisely, I am going to look at some examples of branching problems for representations in the scalar-valued holomorphic discrete series of some conformal Lie groups. Using the geometry of symmetric cone, I will explain how the theory of orthogonal polynomials can be related to branching problems and to the construction of symmetry breaking and holographic operators.
In this talk, I will present some results obtained during my PhD about a link between branching problems for conformal Lie groups and orthogonal polynomials. More precisely, I am going to look at some examples of branching problems for representations in the scalar-valued holomorphic discrete series of some conformal Lie groups. Using the geometry of symmetric cone, I will explain how the theory of orthogonal polynomials can be related to branching problems and to the construction of symmetry breaking and holographic operators.