Tuesday Seminar of Analysis

Seminar information archive ~12/10Next seminarFuture seminars 12/11~

Date, time & place Tuesday 16:00 - 17:30 156Room #156 (Graduate School of Math. Sci. Bldg.)
Organizer(s) ISHIGE Kazuhiro, SAKAI Hidetaka, ITO Kenichi


16:50-18:20   Room #128 (Graduate School of Math. Sci. Bldg.)
Tobias Barker (École Normale Supérieure)
Vorticity alignment vs vorticity creation at the boundary (English)
[ Abstract ]
The Navier-Stokes are used as a model for viscous incompressible fluids such as water. The question as to whether or not the equations in three dimensions form singularities is an open Millennium prize problem. In their celebrated paper in 1993, Constantin and Fefferman showed that (in the whole plane) if the vorticity is sufficiently well aligned in regions of high vorticity then the Navier-Stokes equations remain smooth. For the half-space it is commonly assumed that viscous fluids `stick' to the boundary, which generates vorticity at the boundary. In such a setting, it is open as to whether Constantin and Fefferman's result remains to be true. In my talk I will present recent results in this direction. Joint work with Christophe Prange (CNRS, Université de Bordeaux)