## Tuesday Seminar of Analysis

Seminar information archive ～06/09｜Next seminar｜Future seminars 06/10～

Date, time & place | Tuesday 16:00 - 17:30 156Room #156 (Graduate School of Math. Sci. Bldg.) |
---|---|

Organizer(s) | ISHIGE Kazuhiro, SAKAI Hidetaka, ITO Kenichi |

### 2018/10/30

16:50-18:20 Room #128 (Graduate School of Math. Sci. Bldg.)

Spectral structure of the Neumann-Poincaré operator in three dimensions: Willmore energy and surface geometry (日本語)

**MIYANISHI Yoshihisa**(Osaka University)Spectral structure of the Neumann-Poincaré operator in three dimensions: Willmore energy and surface geometry (日本語)

[ Abstract ]

The Neumann-Poincaré operator (abbreviated by NP) is a boundary integral operator naturally arising when solving classical boundary value problems using layer potentials. If the boundary of the domain, on which the NP operator is defined, is $C^{1, \alpha}$ smooth, then the NP operator is compact. Thus, the Fredholm integral equation, which appears when solving Dirichlet or Neumann problems, can be solved using the Fredholm index theory.

Regarding spectral properties of the NP operator, the spectrum consists of eigenvalues converging to $0$ for $C^{1, \alpha}$ smooth boundaries. Our main purpose here is to deduce eigenvalue asymptotics of the NP operators in three dimensions. This formula is the so-called Weyl's law for eigenvalue problems of NP operators. Then we discuss relationships among the Weyl's law, the Euler characteristic and the Willmore energy on the boundary surface.

The Neumann-Poincaré operator (abbreviated by NP) is a boundary integral operator naturally arising when solving classical boundary value problems using layer potentials. If the boundary of the domain, on which the NP operator is defined, is $C^{1, \alpha}$ smooth, then the NP operator is compact. Thus, the Fredholm integral equation, which appears when solving Dirichlet or Neumann problems, can be solved using the Fredholm index theory.

Regarding spectral properties of the NP operator, the spectrum consists of eigenvalues converging to $0$ for $C^{1, \alpha}$ smooth boundaries. Our main purpose here is to deduce eigenvalue asymptotics of the NP operators in three dimensions. This formula is the so-called Weyl's law for eigenvalue problems of NP operators. Then we discuss relationships among the Weyl's law, the Euler characteristic and the Willmore energy on the boundary surface.