Seminar information archive ~09/25Next seminarFuture seminars 09/26~


17:00-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Laurent Fargues (CNRS, Institut Mathématique de Jussieu)
On the geometry of some p-adic period domains (ENGLISH)
[ Abstract ]
p-adic period spaces have been introduced by Rapoport and Zink as a generalization of Drinfeld upper half spaces and Lubin-Tate spaces. Those are open subsets of a rigid analytic p-adic flag manifold. An approximation of this open subset is the so called weakly admissible locus obtained by removing a profinite set of closed Schubert varieties. I will explain a recent theorem characterizing when the period space coincides with the weakly admissible locus. As an application we can compute the p-adic period space of K3 surfaces with supersingular reduction. The talk will be mainly introductory, presenting the objects showing up in this theorem. This is joint work with Miaofen Chen and Xu Shen.