Numerical Analysis Seminar
Seminar information archive ~10/15|Next seminar|Future seminars 10/16~
Date, time & place | Tuesday 16:30 - 18:00 002Room #002 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | Norikazu Saito, Takahito Kashiwabara |
2018/02/19
15:00-16:00 Room #056 (Graduate School of Math. Sci. Bldg.)
Michael Plum (Karlsruhe Insitute of Technology)
Existence, multiplicity, and orbital stability for travelling waves in a nonlinearly supported beam (English)
Michael Plum (Karlsruhe Insitute of Technology)
Existence, multiplicity, and orbital stability for travelling waves in a nonlinearly supported beam (English)
[ Abstract ]
For a nonlinear beam equation with exponential nonlinearity, we prove existence of at least 36 travelling wave solutions for the specific wave speed c=1.3. Our proof makes heavy use of computer assistance: starting from numerical approximations, we use a fixed point argument to prove existence of solutions "close to" the approximate ones. Furthermore we investigate the orbital stability of these solutions by making use of both analytical and computer-assisted techniques.
For a nonlinear beam equation with exponential nonlinearity, we prove existence of at least 36 travelling wave solutions for the specific wave speed c=1.3. Our proof makes heavy use of computer assistance: starting from numerical approximations, we use a fixed point argument to prove existence of solutions "close to" the approximate ones. Furthermore we investigate the orbital stability of these solutions by making use of both analytical and computer-assisted techniques.