Lie Groups and Representation Theory

Seminar information archive ~10/14Next seminarFuture seminars 10/15~

Date, time & place Tuesday 16:30 - 18:00 126Room #126 (Graduate School of Math. Sci. Bldg.)

2017/09/26

17:00-18:30   Room #056 (Graduate School of Math. Sci. Bldg.)
Hideko Sekiguchi (The University of Tokyo)
Representations of Semisimple Lie Groups and Penrose Transform (Japanese)
[ Abstract ]
The classical Penrose transform is generalized to an intertwining operator on Dolbeault cohomologies of complex homogeneous spaces $X$ of (real) semisimple Lie groups.

I plan to discuss a detailed analysis when $X$ is an indefinite Grassmann manifold.

To be more precise, we determine the image of the Penrose transform, from the Dolbeault cohomology group on the indefinite Grassmann manifold consisting of maximally positive $k$-planes in ${\mathbb{C}}^{p,q}$ ($1 \le k \le \min(p,q)$) to the space of holomorphic functions over the bounded symmetric domain.

Furthermore, we prove that there is a duality between Dolbeault cohomology groups in two indefinite Grassmann manifolds, namely, that of positive $k$-planes and that of negative $k$-planes.