Tuesday Seminar of Analysis
Seminar information archive ~05/02|Next seminar|Future seminars 05/03~
Date, time & place | Tuesday 16:00 - 17:30 156Room #156 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | ISHIGE Kazuhiro, SAKAI Hidetaka, ITO Kenichi |
2016/06/28
16:50-18:20 Room #126 (Graduate School of Math. Sci. Bldg.)
Georgi Raikov (The Pontificia Universidad Católica de Chile)
Discrete spectrum of Schr\"odinger operators with oscillating decaying potentials (English)
Georgi Raikov (The Pontificia Universidad Católica de Chile)
Discrete spectrum of Schr\"odinger operators with oscillating decaying potentials (English)
[ Abstract ]
I will consider the Schr\"odinger operator $H_{\eta W} =-\Delta + \eta W$, self-adjoint in $L^2(\re^d)$, $d \geq 1$. Here $\eta$ is a non constant almost periodic function, while $W$ decays slowly and regularly at infinity. I will discuss the asymptotic behaviour of the discrete spectrum of $H_{\eta W}$ near the origin. Due to the irregular decay of $\eta W$, there exist some non semiclassical phenomena; in particular, $H_{\eta W}$ has less eigenvalues than suggested by the semiclassical intuition.
I will consider the Schr\"odinger operator $H_{\eta W} =-\Delta + \eta W$, self-adjoint in $L^2(\re^d)$, $d \geq 1$. Here $\eta$ is a non constant almost periodic function, while $W$ decays slowly and regularly at infinity. I will discuss the asymptotic behaviour of the discrete spectrum of $H_{\eta W}$ near the origin. Due to the irregular decay of $\eta W$, there exist some non semiclassical phenomena; in particular, $H_{\eta W}$ has less eigenvalues than suggested by the semiclassical intuition.