Seminar on Probability and Statistics
Seminar information archive ~09/10|Next seminar|Future seminars 09/11~
Organizer(s) | Nakahiro Yoshida, Hiroki Masuda, Teppei Ogihara, Yuta Koike |
---|
2016/01/20
13:00-17:00 Room #123 (Graduate School of Math. Sci. Bldg.)
Enzo Orsingher (Sapienza University of Rome)
Fractional calculus and some applications to stochastic processes
Enzo Orsingher (Sapienza University of Rome)
Fractional calculus and some applications to stochastic processes
[ Abstract ]
1) Riemann-Liouville fractional integrals and derivatives
2) integrals of derivatives and derivatives of integrals
3) Dzerbayshan-Caputo fractional derivatives
4) Marchaud derivative
5) Riesz potential and fractional derivatives
6) Hadamard derivatives and also Erdelyi-Kober derivatives
7) Laplace transforms of Riemann.Liouville and Dzerbayshan-Caputo fractional derivatives
8) Fractional diffusion equations and related special functions (Mittag-Leffler and Wright functions)
9) Fractional telegraph equations (space-time fractional equations and also their mutidimensional versions)
10) Time-fractional telegraph Poisson process
11) Space fractional Poisson process
13) Other fractional point processes (birth and death processes)
14) We shall present the relationship between solutions of wave and Euler-Poisson-Darboux equations through the Erdelyi-Kober integrals.
In these lessons we will introduce the main ideas of the classical fractional calculus. The results and theorems will be presented with all details and calculations. We shall study some fundamental fractional equations and their interplay with stochastic processes. Some details on the iterated Brownian motion will also be given.
1) Riemann-Liouville fractional integrals and derivatives
2) integrals of derivatives and derivatives of integrals
3) Dzerbayshan-Caputo fractional derivatives
4) Marchaud derivative
5) Riesz potential and fractional derivatives
6) Hadamard derivatives and also Erdelyi-Kober derivatives
7) Laplace transforms of Riemann.Liouville and Dzerbayshan-Caputo fractional derivatives
8) Fractional diffusion equations and related special functions (Mittag-Leffler and Wright functions)
9) Fractional telegraph equations (space-time fractional equations and also their mutidimensional versions)
10) Time-fractional telegraph Poisson process
11) Space fractional Poisson process
13) Other fractional point processes (birth and death processes)
14) We shall present the relationship between solutions of wave and Euler-Poisson-Darboux equations through the Erdelyi-Kober integrals.
In these lessons we will introduce the main ideas of the classical fractional calculus. The results and theorems will be presented with all details and calculations. We shall study some fundamental fractional equations and their interplay with stochastic processes. Some details on the iterated Brownian motion will also be given.