Tuesday Seminar of Analysis

Seminar information archive ~07/20Next seminarFuture seminars 07/21~

Date, time & place Tuesday 16:00 - 17:30 156Room #156 (Graduate School of Math. Sci. Bldg.)
Organizer(s) ISHIGE Kazuhiro, SAKAI Hidetaka, ITO Kenichi


16:50-18:20   Room #126 (Graduate School of Math. Sci. Bldg.)
Pen-Yuan Hsu (Graduate School of Mathematical Sciences, the University of Tokyo)
A local analysis of the swirling flow to the axi-symmetric Navier-Stokes equations near a saddle point and no-slip flat boundary (English)
[ Abstract ]
As one of the violent flow, tornadoes occur in many place of the world. In order to reduce human losses and material damage caused by tornadoes, there are many research methods. One of the effective methods is numerical simulations.  The swirling structure is significant both in mathematical analysis and the numerical simulations of tornado. In this joint work with H. Notsu and T. Yoneda we try to clarify the swirling structure. More precisely, we do numerical computations on axi-symmetric Navier-Stokes flows with no-slip flat boundary. We compare a hyperbolic flow with swirl and one without swirl and observe that the following phenomenons occur only in the swirl case: The distance between the point providing the maximum velocity magnitude $|v|$ and the $z$-axis is drastically changing around some time (which we call it turning point). An ``increasing velocity phenomenon'' occurs near the boundary and the maximum value of $|v|$ is obtained near the axis of symmetry and the boundary when time is close to the turning point.