Numerical Analysis Seminar

Seminar information archive ~09/10Next seminarFuture seminars 09/11~

Date, time & place Tuesday 16:30 - 18:00 002Room #002 (Graduate School of Math. Sci. Bldg.)
Organizer(s) Norikazu Saito, Takahito Kashiwabara

2015/06/29

16:30-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Yoshio Komori (Kyushu Institute of Technology)
Stabilized Runge-Kutta methods for the weak approximation of solutions of stochastic differential equations (日本語)
[ Abstract ]
We are concerned with numerical methods which give weak approximations for stiff It\^{o} stochastic differential equations (SDEs). Implicit methods are one of good candidates to deal with such SDEs. In fact, a well-designed implicit method has been recently proposed by Abdulle and his colleagues [Abdulle et al. 2013a]. On the other hand, it is well known that the numerical solution of stiff SDEs leads to a stepsize reduction when explicit methods are used. However, there are some classes of explicit methods that are well suited to solving some types of stiff SDEs. One such class is the class of stochastic orthogonal Runge-Kutta Chebyshev (SROCK) methods [Abdulle et al. 2013b]. SROCK methods reduce to Runge-Kutta Chebyshev methods when applied to ordinary differential equations (ODEs). Another promising class of methods is the class of explicit methods that reduce to explicit exponential Runge-Kutta (RK) methods [Hochbruck et al. 2005, 2010] when applied to semilinear ODEs.
In this talk, we will propose new exponential RK methods which achieve weak order two for multi-dimensional, non-commutative SDEs with a semilinear drift term. We will analytically investigate their stability properties in mean square, and will check their performance in numerical experiments.
(This is a joint work with D. Cohen and K. Burrage.)