Lie Groups and Representation Theory

Seminar information archive ~09/15Next seminarFuture seminars 09/16~

Date, time & place Tuesday 16:30 - 18:00 126Room #126 (Graduate School of Math. Sci. Bldg.)

2015/04/14

16:30-18:00   Room #122 (Graduate School of Math. Sci. Bldg.)
Yuichiro Tanaka (Institute of Mathematics for Industry, Kyushu University)
Visible actions of compact Lie groups on complex spherical varieties (English)
[ Abstract ]
With the aim of uniform treatment of multiplicity-free representations of Lie groups, T. Kobayashi introduced the theory of visible actions on complex manifolds.

In this talk we consider visible actions of a compact real form U of a connected complex reductive algebraic group G on G-spherical varieties. Here a complex G-variety X is said to be spherical if a Borel subgroup of G has an open orbit on X. The sphericity implies the multiplicity-freeness property of the space of polynomials on X. Our main result gives an abstract proof for the visibility of U-actions. As a corollary, we obtain an alternative proof for the visibility of U-actions on linear multiplicity-free spaces, which was earlier proved by A. Sasaki (2009, 2011), and the visibility of U-actions on generalized flag varieties, earlier proved by Kobayashi (2007) and T- (2013, 2014).