Kavli IPMU Komaba Seminar
Seminar information archive ~11/11|Next seminar|Future seminars 11/12~
| Date, time & place | Monday 16:30 - 18:00 002Room #002 (Graduate School of Math. Sci. Bldg.) |
|---|
2013/11/18
17:00-18:30 Room #002 (Graduate School of Math. Sci. Bldg.)
Mauricio Romo (Kavli IPMU)
Exact Results In Two-Dimensional (2,2) Supersymmetric Gauge Theories With Boundary
(ENGLISH)
Mauricio Romo (Kavli IPMU)
Exact Results In Two-Dimensional (2,2) Supersymmetric Gauge Theories With Boundary
(ENGLISH)
[ Abstract ]
I will talk about the recent computation, done in joint work with Prof. K. Hori, of the partition function on the hemisphere of a class of two-dimensional (2,2) supersymmetric field theories including gauged linear sigma models (GLSM). The result provides a general exact formula for the central charge of the D-branes placed at the boundary. From the mathematical point of view, for the case of GLSMs that admit a geometrical interpretation, this formula provides an expression for the central charge of objects in the derived category at any point of the stringy Kahler moduli space. I will describe how this formula arises from physics and give simple, yet important, examples that supports its validity. If time allows, I will also explain some of its consequences such as how it can be used to obtain the grade restriction rule for branes near phase boundaries.
I will talk about the recent computation, done in joint work with Prof. K. Hori, of the partition function on the hemisphere of a class of two-dimensional (2,2) supersymmetric field theories including gauged linear sigma models (GLSM). The result provides a general exact formula for the central charge of the D-branes placed at the boundary. From the mathematical point of view, for the case of GLSMs that admit a geometrical interpretation, this formula provides an expression for the central charge of objects in the derived category at any point of the stringy Kahler moduli space. I will describe how this formula arises from physics and give simple, yet important, examples that supports its validity. If time allows, I will also explain some of its consequences such as how it can be used to obtain the grade restriction rule for branes near phase boundaries.


Text only print
Full screen print

