GCOE Seminars
Seminar information archive ~09/11|Next seminar|Future seminars 09/12~
2013/03/05
17:00-18:00 Room #270 (Graduate School of Math. Sci. Bldg.)
Oleg Emanouilov (Colorado State University)
Uniqueness for inverse boundary value problems by Dirichlet-to
-Neumann map on subboundaries (ENGLISH)
Oleg Emanouilov (Colorado State University)
Uniqueness for inverse boundary value problems by Dirichlet-to
-Neumann map on subboundaries (ENGLISH)
[ Abstract ]
We consider inverse boundary value problems for elliptic equations of second order and survey recent results on the uniqueness mainly by partial boundary data. In particular, in two dimensions, we show uniqueness results by means of Dirichlet data supported on an arbitrary subboundary $\\widetilde\\Gamma$ and Neumann data measured on $\\widetilde\\Gamma$. We describe the key idea for the proof: complex geometric optics solutions which are constructed by a Carleman estimate. Also we show the uniqueness by Dirichlet-to-Neumann map on subboundaries in three dimensions.
We consider inverse boundary value problems for elliptic equations of second order and survey recent results on the uniqueness mainly by partial boundary data. In particular, in two dimensions, we show uniqueness results by means of Dirichlet data supported on an arbitrary subboundary $\\widetilde\\Gamma$ and Neumann data measured on $\\widetilde\\Gamma$. We describe the key idea for the proof: complex geometric optics solutions which are constructed by a Carleman estimate. Also we show the uniqueness by Dirichlet-to-Neumann map on subboundaries in three dimensions.