Lectures
Seminar information archive ~03/17|Next seminar|Future seminars 03/18~
2013/01/30
17:30-18:30 Room #122 (Graduate School of Math. Sci. Bldg.)
Antonio Degasperis (La Sapienza, University of Rome)
Integrable nonlinear wave equations, nonlocal interaction and spectral methods (ENGLISH)
Antonio Degasperis (La Sapienza, University of Rome)
Integrable nonlinear wave equations, nonlocal interaction and spectral methods (ENGLISH)
[ Abstract ]
A general class of integrable nonlinear multi-component wave equations are discussed to show that integrability, as implied by Lax pair, does not necessarily imply solvability of the initial value problem by spectral methods. A simple instance of this class, with applicative relevance to nonlinear optics, is discussed as a prototype model. Conservation laws and special solutions of this model are displayed to underline the integrability issue.
A general class of integrable nonlinear multi-component wave equations are discussed to show that integrability, as implied by Lax pair, does not necessarily imply solvability of the initial value problem by spectral methods. A simple instance of this class, with applicative relevance to nonlinear optics, is discussed as a prototype model. Conservation laws and special solutions of this model are displayed to underline the integrability issue.