Lie Groups and Representation Theory

Seminar information archive ~07/20Next seminarFuture seminars 07/21~

Date, time & place Tuesday 16:30 - 18:00 126Room #126 (Graduate School of Math. Sci. Bldg.)


16:30-17:30   Room #126 (Graduate School of Math. Sci. Bldg.)
Ali Baklouti (Sfax University)
On the geometry of discontinuous subgroups acting on some homogeneous spaces (ENGLISH)
[ Abstract ]
Let $G$ be a Lie group, $H$ a closed subgroup of $G$ and \\Gamma$ a discontinuous subgroup for the homogeneous space $G/H$. I first introduce the deformation space ${\\mathcal{T}}^{K_o}(\\Gamma, G, H)$ of the action of $\\Gamma$ on $G/H$ in the sense of Kobayashi and some of its refined versions, namely the Clifford--Klein space of deformations of the form ${\\mathcal{X}}=\\Gamma \\backslash G/H$. The deformation space ${\\mathcal{T}}^{G_o}(\\Gamma, G,H)$ of marked $(G,H)$-structures on ${\\mathcal{X}}$ in the sense of Goldman is also introduced. As an important motivation, I will explain the connection between the spaces ${\\mathcal{T}}^{K_o}(\\Gamma, G, H)$ and ${\\mathcal{T}}^{G_o}(\\Gamma, G, H)$ and study some of their topological features, namely the rigidity in the sense of Selberg--Weil--Kobayashi and the stability in the sense of Kobayashi--Nasrin. The latter appears to be of major interest to write down the connection explicitly.