Lie Groups and Representation Theory
Seminar information archive ~06/25|Next seminar|Future seminars 06/26~
Date, time & place | Tuesday 16:30 - 18:00 126Room #126 (Graduate School of Math. Sci. Bldg.) |
---|
2012/11/20
16:30-17:30 Room #126 (Graduate School of Math. Sci. Bldg.)
Ali Baklouti (Sfax University)
On the geometry of discontinuous subgroups acting on some homogeneous spaces (ENGLISH)
Ali Baklouti (Sfax University)
On the geometry of discontinuous subgroups acting on some homogeneous spaces (ENGLISH)
[ Abstract ]
Let G be a Lie group, H a closed subgroup of G and \\GammaadiscontinuoussubgroupforthehomogeneousspaceG/H.Ifirstintroducethedeformationspace{\\mathcal{T}}^{K_o}(\\Gamma, G, H)oftheactionof\\GammaonG/HinthesenseofKobayashiandsomeofitsrefinedversions,namelytheClifford−−Kleinspaceofdeformationsoftheform{\\mathcal{X}}=\\Gamma \\backslash G/H.Thedeformationspace{\\mathcal{T}}^{G_o}(\\Gamma, G,H)ofmarked(G,H)−structureson{\\mathcal{X}}inthesenseofGoldmanisalsointroduced.Asanimportantmotivation,Iwillexplaintheconnectionbetweenthespaces{\\mathcal{T}}^{K_o}(\\Gamma, G, H)and{\\mathcal{T}}^{G_o}(\\Gamma, G, H)$ and study some of their topological features, namely the rigidity in the sense of Selberg--Weil--Kobayashi and the stability in the sense of Kobayashi--Nasrin. The latter appears to be of major interest to write down the connection explicitly.
Let G be a Lie group, H a closed subgroup of G and \\GammaadiscontinuoussubgroupforthehomogeneousspaceG/H.Ifirstintroducethedeformationspace{\\mathcal{T}}^{K_o}(\\Gamma, G, H)oftheactionof\\GammaonG/HinthesenseofKobayashiandsomeofitsrefinedversions,namelytheClifford−−Kleinspaceofdeformationsoftheform{\\mathcal{X}}=\\Gamma \\backslash G/H.Thedeformationspace{\\mathcal{T}}^{G_o}(\\Gamma, G,H)ofmarked(G,H)−structureson{\\mathcal{X}}inthesenseofGoldmanisalsointroduced.Asanimportantmotivation,Iwillexplaintheconnectionbetweenthespaces{\\mathcal{T}}^{K_o}(\\Gamma, G, H)and{\\mathcal{T}}^{G_o}(\\Gamma, G, H)$ and study some of their topological features, namely the rigidity in the sense of Selberg--Weil--Kobayashi and the stability in the sense of Kobayashi--Nasrin. The latter appears to be of major interest to write down the connection explicitly.