Lie Groups and Representation Theory
Seminar information archive ~02/12|Next seminar|Future seminars 02/13~
Date, time & place | Tuesday 16:30 - 18:00 126Room #126 (Graduate School of Math. Sci. Bldg.) |
---|
2012/11/20
16:30-17:30 Room #126 (Graduate School of Math. Sci. Bldg.)
Ali Baklouti (Sfax University)
On the geometry of discontinuous subgroups acting on some homogeneous spaces (ENGLISH)
Ali Baklouti (Sfax University)
On the geometry of discontinuous subgroups acting on some homogeneous spaces (ENGLISH)
[ Abstract ]
Let $G$ be a Lie group, $H$ a closed subgroup of $G$ and \\Gamma$ a discontinuous subgroup for the homogeneous space $G/H$. I first introduce the deformation space ${\\mathcal{T}}^{K_o}(\\Gamma, G, H)$ of the action of $\\Gamma$ on $G/H$ in the sense of Kobayashi and some of its refined versions, namely the Clifford--Klein space of deformations of the form ${\\mathcal{X}}=\\Gamma \\backslash G/H$. The deformation space ${\\mathcal{T}}^{G_o}(\\Gamma, G,H)$ of marked $(G,H)$-structures on ${\\mathcal{X}}$ in the sense of Goldman is also introduced. As an important motivation, I will explain the connection between the spaces ${\\mathcal{T}}^{K_o}(\\Gamma, G, H)$ and ${\\mathcal{T}}^{G_o}(\\Gamma, G, H)$ and study some of their topological features, namely the rigidity in the sense of Selberg--Weil--Kobayashi and the stability in the sense of Kobayashi--Nasrin. The latter appears to be of major interest to write down the connection explicitly.
Let $G$ be a Lie group, $H$ a closed subgroup of $G$ and \\Gamma$ a discontinuous subgroup for the homogeneous space $G/H$. I first introduce the deformation space ${\\mathcal{T}}^{K_o}(\\Gamma, G, H)$ of the action of $\\Gamma$ on $G/H$ in the sense of Kobayashi and some of its refined versions, namely the Clifford--Klein space of deformations of the form ${\\mathcal{X}}=\\Gamma \\backslash G/H$. The deformation space ${\\mathcal{T}}^{G_o}(\\Gamma, G,H)$ of marked $(G,H)$-structures on ${\\mathcal{X}}$ in the sense of Goldman is also introduced. As an important motivation, I will explain the connection between the spaces ${\\mathcal{T}}^{K_o}(\\Gamma, G, H)$ and ${\\mathcal{T}}^{G_o}(\\Gamma, G, H)$ and study some of their topological features, namely the rigidity in the sense of Selberg--Weil--Kobayashi and the stability in the sense of Kobayashi--Nasrin. The latter appears to be of major interest to write down the connection explicitly.