Tuesday Seminar of Analysis
Seminar information archive ~09/12|Next seminar|Future seminars 09/13~
Date, time & place | Tuesday 16:00 - 17:30 156Room #156 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | ISHIGE Kazuhiro, SAKAI Hidetaka, ITO Kenichi |
2012/05/22
16:30-18:00 Room #118 (Graduate School of Math. Sci. Bldg.)
Norbert Pozar (Graduate School of Mathematical Sciences, The University of Tokyo)
Viscosity solutions for nonlinear elliptic-parabolic problems (ENGLISH)
Norbert Pozar (Graduate School of Mathematical Sciences, The University of Tokyo)
Viscosity solutions for nonlinear elliptic-parabolic problems (ENGLISH)
[ Abstract ]
We introduce a notion of viscosity solutions for a general class of
elliptic-parabolic phase transition problems. These include the
Richards equation, which is a classical model in filtration theory.
Existence and uniqueness results are proved via the comparison
principle. In particular, we show existence and stability properties
of maximal and minimal viscosity solutions for a general class of
initial data. These results are new even in the linear case, where we
also show that viscosity solutions coincide with the regular weak
solutions introduced in [Alt&Luckhaus 1983]. This talk is based on a
recent work with Inwon Kim.
We introduce a notion of viscosity solutions for a general class of
elliptic-parabolic phase transition problems. These include the
Richards equation, which is a classical model in filtration theory.
Existence and uniqueness results are proved via the comparison
principle. In particular, we show existence and stability properties
of maximal and minimal viscosity solutions for a general class of
initial data. These results are new even in the linear case, where we
also show that viscosity solutions coincide with the regular weak
solutions introduced in [Alt&Luckhaus 1983]. This talk is based on a
recent work with Inwon Kim.