Lie Groups and Representation Theory

Seminar information archive ~04/12Next seminarFuture seminars 04/13~

Date, time & place Tuesday 16:30 - 18:00 126Room #126 (Graduate School of Math. Sci. Bldg.)

2011/11/22

16:30-18:00   Room #002 (Graduate School of Math. Sci. Bldg.)
Takayuki Okuda (東京大学大学院 数理科学研究科)
Smallest complex nilpotent orbit with real points (JAPANESE)
[ Abstract ]
Let $\\mathfrak{g}$ be a non-compact simple Lie algebra with no complex
structures.
In this talk, we show that there exists a complex nilpotent orbit
$\\mathcal{O}^{G_\\mathbb{C}}_{\\text{min},\\mathfrak{g}}$ in
$\\mathfrak{g}_\\mathbb{C}$ ($:=\\mathfrak{g} \\otimes \\mathbb{C}$)
containing all of real nilpotent orbits in $\\mathfrak{g}$ of minimal
positive dimension.
For many $\\mathfrak{g}$, the orbit
$\\mathcal{O}^{G_\\mathbb{C}}_{\\text{min},\\mathfrak{g}}$ is just the
complex minimal nilpotent orbit in $\\mathfrak{g}_\\mathbb{C}$.
However, for the cases where $\\mathfrak{g}$ is isomorphic to
$\\mathfrak{su}^*(2k)$, $\\mathfrak{so}(n-1,1)$, $\\mathfrak{sp}(p,q)$,
$\\mathfrak{e}_{6(-26)}$ or $\\mathfrak{f}_{4(-20)}$,
the orbit $\\mathcal{O}^{G_\\mathbb{C}}_{\\text{min},\\mathfrak{g}}$ is not
the complex minimal nilpotent orbit in $\\mathfrak{g}_\\mathbb{C}$.
We also determine $\\mathcal{O}^{G_\\mathbb{C}}_{\\text{min},\\mathfrak{g}}$
by describing the weighted Dynkin diagrams of these for such cases.