Lectures
Seminar information archive ~03/29|Next seminar|Future seminars 03/30~
2011/11/18
15:00-16:00 Room #052 (Graduate School of Math. Sci. Bldg.)
Hiroshi Isozaki (University of Tsukuba)
Inverse problems for heat equations with discontinuous conductivities
(JAPANESE)
Hiroshi Isozaki (University of Tsukuba)
Inverse problems for heat equations with discontinuous conductivities
(JAPANESE)
[ Abstract ]
In a bounded domain $\\Omega \\subset {\\bf R}^n$, consider the heat
equation $\\partial_tu = \\nabla(\\gamma(t,x)\\nabla u)$. The heat
conductivity is assumed to be piecewise constant : $\\gamma = k^2$ on
$\\Omaga_1(t) \\subset\\subset \\Omega$, $\\gamma(t,x) = 1$ on
$\\Omega\\setminus\\Omega_1(t)$. In this talk, we present recent results
for the inverse problems of reconstructing $\\gamma(t,x)$ from the
Dirichlet-to-Neumann map :
$u(t)|_{\\partial\\Omega} \\to $\\partial_{\\nu}u|_{\\partial\\Omega}$ for a time
interval $(0,T)$. These are the joint works with P.Gaitan, O.Poisson,
S.Siltanen, J.Tamminen.
In a bounded domain $\\Omega \\subset {\\bf R}^n$, consider the heat
equation $\\partial_tu = \\nabla(\\gamma(t,x)\\nabla u)$. The heat
conductivity is assumed to be piecewise constant : $\\gamma = k^2$ on
$\\Omaga_1(t) \\subset\\subset \\Omega$, $\\gamma(t,x) = 1$ on
$\\Omega\\setminus\\Omega_1(t)$. In this talk, we present recent results
for the inverse problems of reconstructing $\\gamma(t,x)$ from the
Dirichlet-to-Neumann map :
$u(t)|_{\\partial\\Omega} \\to $\\partial_{\\nu}u|_{\\partial\\Omega}$ for a time
interval $(0,T)$. These are the joint works with P.Gaitan, O.Poisson,
S.Siltanen, J.Tamminen.