Lectures
Seminar information archive ~11/02|Next seminar|Future seminars 11/03~
2010/09/03
14:30-15:30 Room #370 (Graduate School of Math. Sci. Bldg.)
Luc Robbiano (University of Versailles)
Carleman estimates and boundary problems. (JAPANESE)
Luc Robbiano (University of Versailles)
Carleman estimates and boundary problems. (JAPANESE)
[ Abstract ]
In this presentation, based on joint works with Jerome LeRousseau and Matthieu Leautaud, we consider boundary problems for elliptic/parabolic operators. We prove Carleman estimates in such cases. One of the interest for such an estimate is the implied controllability of (semi-linear) heat equations.
One of the main aspects of the proof is a microlocal decomposition separating high and low tangential frequencies.
If time permits, we will present how such an approach can be used to prove Carleman estimates in the case of non smooth coefficients at an interface, possibly with an additional diffusion process along the interface.
In this presentation, based on joint works with Jerome LeRousseau and Matthieu Leautaud, we consider boundary problems for elliptic/parabolic operators. We prove Carleman estimates in such cases. One of the interest for such an estimate is the implied controllability of (semi-linear) heat equations.
One of the main aspects of the proof is a microlocal decomposition separating high and low tangential frequencies.
If time permits, we will present how such an approach can be used to prove Carleman estimates in the case of non smooth coefficients at an interface, possibly with an additional diffusion process along the interface.