Tuesday Seminar of Analysis
Seminar information archive ~12/07|Next seminar|Future seminars 12/08~
Date, time & place | Tuesday 16:00 - 17:30 156Room #156 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | ISHIGE Kazuhiro, SAKAI Hidetaka, ITO Kenichi |
2010/09/28
16:30-18:00 Room #128 (Graduate School of Math. Sci. Bldg.)
Pavel Exner (Czech Academy of Sciences)
Some spectral and resonance properties of quantum graphs (ENGLISH)
Pavel Exner (Czech Academy of Sciences)
Some spectral and resonance properties of quantum graphs (ENGLISH)
[ Abstract ]
In this talk I will discuss three new results about Schr¨odinger operators
on metric graphs obtained in collaboration with Jiri Lipovskyand Brian Davies.
The first one is related to invalidity of the uniform continuation principle for such
operators. One manifestation of this fact are embedded eigenvalues due to
rational relations of graph edge lengths. This effect is non-generic and we show
how geometric perturbations turn these embedded eigenvalues into resonances.
Then second problem is related to high-energy behavior of resonances: we extend
a recent result of Davies and Pushnitski to graphs with general vertex couplings
and find conditions under which the asymptotics does not have Weyl character.
Finally, the last question addressed here concerns the absolutely continuous spectrum
of radial-tree graphs. In a similar vein, we generalize a recent result by Breuer and
Frank that in case of the free (or Kirhhoff) coupling the ac spectrum is absent
provided the edge length are increasing without a bound along the tree.
We show that the result remains valid for a large class of vertex couplings,
but on the other hand, there are nontrivial couplings leading to an ac spectrum.
In this talk I will discuss three new results about Schr¨odinger operators
on metric graphs obtained in collaboration with Jiri Lipovskyand Brian Davies.
The first one is related to invalidity of the uniform continuation principle for such
operators. One manifestation of this fact are embedded eigenvalues due to
rational relations of graph edge lengths. This effect is non-generic and we show
how geometric perturbations turn these embedded eigenvalues into resonances.
Then second problem is related to high-energy behavior of resonances: we extend
a recent result of Davies and Pushnitski to graphs with general vertex couplings
and find conditions under which the asymptotics does not have Weyl character.
Finally, the last question addressed here concerns the absolutely continuous spectrum
of radial-tree graphs. In a similar vein, we generalize a recent result by Breuer and
Frank that in case of the free (or Kirhhoff) coupling the ac spectrum is absent
provided the edge length are increasing without a bound along the tree.
We show that the result remains valid for a large class of vertex couplings,
but on the other hand, there are nontrivial couplings leading to an ac spectrum.