Lie Groups and Representation Theory
Seminar information archive ~12/01|Next seminar|Future seminars 12/02~
| Date, time & place | Tuesday 16:30 - 18:00 126Room #126 (Graduate School of Math. Sci. Bldg.) |
|---|
2010/06/08
17:00-18:30 Room #126 (Graduate School of Math. Sci. Bldg.)
Soji Kaneyuki (Sophia University)
Automorphism groups of causal Makarevich spaces (JAPANESE)
Soji Kaneyuki (Sophia University)
Automorphism groups of causal Makarevich spaces (JAPANESE)
[ Abstract ]
Let G^ be a simple Lie group of Hermitian type and U^ be a maximal parabolic subgroup of G^ with abelian nilradical. The flag manifold M^= G^/ U^ is the Shilov
boundary of an irreducible bounded symmetric domain of tube type. M^ has the G-invariant causal structure. A causal Makarevich space is, by definition, an open symmetric G-orbit M in M^, endowed with the causal structure induced from that
of the ambient space M^, G being a reductive subgroup of G^. All symmetric cones fall in the class of causal Makarevich spaces.
In this talk, we determine the causal automorphism groups of all causal Makarevich spaces.
Let G^ be a simple Lie group of Hermitian type and U^ be a maximal parabolic subgroup of G^ with abelian nilradical. The flag manifold M^= G^/ U^ is the Shilov
boundary of an irreducible bounded symmetric domain of tube type. M^ has the G-invariant causal structure. A causal Makarevich space is, by definition, an open symmetric G-orbit M in M^, endowed with the causal structure induced from that
of the ambient space M^, G being a reductive subgroup of G^. All symmetric cones fall in the class of causal Makarevich spaces.
In this talk, we determine the causal automorphism groups of all causal Makarevich spaces.


Text only print
Full screen print

