Lie Groups and Representation Theory
Seminar information archive ~09/18|Next seminar|Future seminars 09/19~
Date, time & place | Tuesday 16:30 - 18:00 126Room #126 (Graduate School of Math. Sci. Bldg.) |
---|
2010/05/11
16:30-18:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Hisayosi Matumoto (the University of Tokyo)
On a finite $W$-algebra module structure on the space of
continuous Whittaker vectors for an irreducible Harish-Chandra module (ENGLISH)
Hisayosi Matumoto (the University of Tokyo)
On a finite $W$-algebra module structure on the space of
continuous Whittaker vectors for an irreducible Harish-Chandra module (ENGLISH)
[ Abstract ]
Let $G$ be a real reductive Lie group. The space of continuous Whittaker vectors for an irreducible Harish-Chandra module has a structure of a module over a finite $W$-algebra. We have seen such modules are irreducible for groups of type A. However, there is a counterexample to the naive conjecture. We discuss a refined version of the conjecture and further examples in this talk.
Let $G$ be a real reductive Lie group. The space of continuous Whittaker vectors for an irreducible Harish-Chandra module has a structure of a module over a finite $W$-algebra. We have seen such modules are irreducible for groups of type A. However, there is a counterexample to the naive conjecture. We discuss a refined version of the conjecture and further examples in this talk.