Operator Algebra Seminars

Seminar information archive ~12/09Next seminarFuture seminars 12/10~

Date, time & place Wednesday 16:30 - 18:00 122Room #122 (Graduate School of Math. Sci. Bldg.)


16:30-18:00   Room #128 (Graduate School of Math. Sci. Bldg.)
Nigel Higson (Pennsylvania State Univ.)
The Baum-Connes Conjecture and Group Representations (ENGLISH)
[ Abstract ]
The Baum-Connes conjecture asserts a sort of duality between the reduced unitary dual of a group and (a variant of) the classifying space of the group. The conjectured duality occurs at the level of K-theory. For example, for free abelian groups it amounts to a K-theoretic form of Fourier-Mukai duality. The conjecture has well-known applications in topology and geometry, but it also resonates in various ways with Lie groups and representation theory. I'll try to indicate how this comes about, and then focus on a fairly new aspect of the relationship that develops some early ideas of Mackey.