## Lectures

Seminar information archive ～04/15｜Next seminar｜Future seminars 04/16～

### 2010/05/07

16:00-17:30 Room #056 (Graduate School of Math. Sci. Bldg.)

Independence of families of $\\ell$-adic representations and uniform constructibility

**Luc Illusie**(東京大学/Paris南大学)Independence of families of $\\ell$-adic representations and uniform constructibility

[ Abstract ]

Let $k$ be a number field, $\\overline{k}$ an algebraic closure of $k$, $\\Gamma_k = \\mathrm{Gal}(\\overline{k}/k)$. A family of continuous homomorphisms $\\rho_{\\ell} : \\Gamma_k \\rightarrow G_{\\ell}$, indexed by prime numbers $\\ell$, where $G_{\\ell}$ is a locally compact $\\ell$-adic Lie group, is said to be independent if $\\rho(\\Gamma_k) = \\prod \\rho_{\\ell}(\\Gamma_k)$, where $\\rho = (\\rho_{\\ell}) : \\Gamma_k \\rightarrow \\prod G_{\\ell}$. Serre gave a criterion for such a family to become independent after a finite extension of $k$. We will explain Serre's criterion and show that it applies to families coming from the $\\ell$-adic cohomology (or cohomology with compact support) of schemes separated and of finite type over $k$. This application uses a variant of Deligne's generic constructibility theorem with uniformity in $\\ell$.

Let $k$ be a number field, $\\overline{k}$ an algebraic closure of $k$, $\\Gamma_k = \\mathrm{Gal}(\\overline{k}/k)$. A family of continuous homomorphisms $\\rho_{\\ell} : \\Gamma_k \\rightarrow G_{\\ell}$, indexed by prime numbers $\\ell$, where $G_{\\ell}$ is a locally compact $\\ell$-adic Lie group, is said to be independent if $\\rho(\\Gamma_k) = \\prod \\rho_{\\ell}(\\Gamma_k)$, where $\\rho = (\\rho_{\\ell}) : \\Gamma_k \\rightarrow \\prod G_{\\ell}$. Serre gave a criterion for such a family to become independent after a finite extension of $k$. We will explain Serre's criterion and show that it applies to families coming from the $\\ell$-adic cohomology (or cohomology with compact support) of schemes separated and of finite type over $k$. This application uses a variant of Deligne's generic constructibility theorem with uniformity in $\\ell$.