Lectures
Seminar information archive ~10/06|Next seminar|Future seminars 10/07~
2010/02/23
14:00-15:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Bendong LOU (同済大学)
Homogenization Limit and Singular Limit of the Allen-Cahn equation
Bendong LOU (同済大学)
Homogenization Limit and Singular Limit of the Allen-Cahn equation
[ Abstract ]
We consider the Allen-Cahn equation in a cylinder with periodic undulating boundaries in the plane. Our problem involves two small parameters $\\delta$ and $\\epsilon$, where $\\delta$ appears in the equation to denote the scale of the singular limit and $\\epsilon$ appears in the boundary conditions to denote the scale of the homogenization limit. We consider the following two limiting processes:
(I): taking homogenization limit first and then taking singular limit;
(II) taking singular limit first and then taking homogenization limit.
We formally show that they both result in the same mean curvature flow equation, but with different boundary conditions.
We consider the Allen-Cahn equation in a cylinder with periodic undulating boundaries in the plane. Our problem involves two small parameters $\\delta$ and $\\epsilon$, where $\\delta$ appears in the equation to denote the scale of the singular limit and $\\epsilon$ appears in the boundary conditions to denote the scale of the homogenization limit. We consider the following two limiting processes:
(I): taking homogenization limit first and then taking singular limit;
(II) taking singular limit first and then taking homogenization limit.
We formally show that they both result in the same mean curvature flow equation, but with different boundary conditions.